SciELO - Scientific Electronic Library Online

 
vol.18 número2Photoluminescence and cathodoluminescence characteristics of SiO2 and SRO films implanted with Si índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Superficies y vacío

versão impressa ISSN 1665-3521

Superf. vacío vol.18 no.2 Ciudad de México Jun. 2005

 

Articles

Effects of in-situ annealing processes of GaAs(100) surfaces on the molecular beam epitaxial growth of InAs quantum dots

V.H. Méndez-García* 

A. Lastras-Martínez* 

A. Yu Gorbachev* 

V.A. Mishurnyi* 

F. de Anda* 

M. López-López** 

M. Calixto-Rodríguez** 

*Instituto de Investigación en Comunicación Óptica and Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Karakorum 1470, Lomas 4ª. Sección, San Luis Potosí, San Luis Potosí, México. 78210.

**Physics Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Apartado Postal 14470, México, D.F., México.


Abstract

We studied the growth of self-assembled InAs quantum dots (QDs) on GaAs (100) surfaces subjected to an in-situ annealing treatment. The treatment consists in exposing the GaAs buffer layer surface at a high temperature for a few seconds with the As4-shutter closed. The exposure of GaAs at high temperature leads to the formation of nanometric scale pits plus a Ga-rich surface. The annealing modifies in such a way the GaAs surface that the strain mediated transition from two- to three -dimensional InAs growth takes place at a much larger InAs thickness than the obtained under standard conditions. Moreover, the resulting QDs obtained at the equivalent InAs thickness of 3.4 monolayers (MLs) on the annealed GaAs surfaces presented a smaller size dispersion as compared with the conventionally grown QDs. The photoluminescence (PL) emission spectra corresponding to the samples subjected to the in-situ thermal treatment observed a reduction in the full width at half medium (FWHM) and a clear correlation between the dots size increase and the emission peak red-shift. The new-flanged nucleation propitiated by the annealing process was explained in terms of a generation of an intermediated InGaAs thin film created by Ga-clusters on an atomically rough surface and the impinging In atoms.

Keywords: Nanostructures; Quantum dots; Molecular beam epitaxy; Semiconducting III-V materials

Full text available only in PDF format.

Acknowledgments

The authors would like to express their thanks to the technical staff members: N. Saucedo-Zeni, B.E. Torres-Loredo and R. Fragoso. This work was partially supported by CONACyT-Mexico, FAI-UASLP, PROMEP-SESIC.

References

[1] C.D. Lee, C. Park, H.J. Lee, S.K. Noh, K.S. Lee, S.J. Park, Appl. Phys. Lett. 73, 2615 (1998). [ Links ]

[2] Y. Hasegawa, T. Egawa, T. Jimbo, M. Umeno, Appl. Phys. Lett. 68, 523 (1996). [ Links ]

[3] J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, O. Vatel, Appl. Phys. Lett. 64, 196 (1994). [ Links ]

[4] M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995). [ Links ]

[5] J. Oshinowo, M. Nishioka, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994). [ Links ]

[6] T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima, N. Koguchi, J. Crystal Growth 209, 504 (2000). [ Links ]

[7] P.B. Joyce, T.J. Krzyzewski, G.R. Bell, T.S. Jones, E.C. Le Ru, and R. Murray, Phys. Rev. B 64, 235317(2001). [ Links ]

[8] D.L. Huffaker and D.G. Deppe, Appl. Phys. Lett. 73, 520 (1998). [ Links ]

[9] P.B. Joyce , T.J. Krzyzewski , G.R. Bell , T.S. Jones , S. Malik, D. Childs, R. Murray , J. Crystal Growth 227-228, 1000 (2001). [ Links ]

[10] G.S. Solomon, J.A. Trezza, J.S. Harris Jr., Appl. Phys. Lett. 66, 3161 (1995). [ Links ]

[11] S. Kiravittaya, Y. Nakamura, O.G. Schmidt, Physica E 13, 224 (2002). [ Links ]

[12] M. López, Y. Takano, K. Pak and H. Yonezu, Jpn. J. Appl. Phys. 31, 1745 (1992). [ Links ]

[13] D.J. Chadi, J. Vac. Sci. Technol. A 5, 1482 (1987). [ Links ]

[14] P.B. Joyce , T.J. Krzyzewski , G.R. Bell , B.A. Joyce, T.S. Jones , Phys. Rev. B 58, R15981 (1998). [ Links ]

[15] B.F. Lewis, T.C. Lee, F.J. Grunthaner, A. Madhukar, R. Fernandez, and J. Maserjian, J. Vac. Sci. Technol. B 2, 419 (1984). [ Links ]

[16] Ch. Heyn and W. Hansen, J. Crystal Growth 251, 140 (2003). [ Links ]

Received: April 01, 2005; Accepted: May 11, 2005

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License