SciELO - Scientific Electronic Library Online

 
vol.14 número3Efecto de la suplementación mineral y el tipo de almidón en la producción de prodigiosina a partir de un cultivo de Serratia marcescens BS303Evaluación de la estabilidad de nanoemulsiones de β -Caroteno preparadas por un método de homogeneización -Emulsificación empleando ácido esteárico como fase oleosa índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México Set./Dez. 2015

 

Biotecnología

 

Transformation of trans-Anethole using the plant pathogenic fungus Colletotrichum acutatum as biocatalyst

 

Transformación de trans-Anetol usando el hogo fitopatogénico Colletotrichum acutatum como biocatalizador

 

R. Velasco-Bucheli1, A. Mesa2, J. Gil2, 3, C. García2, D. Durango2*

 

1 Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense de Madrid, Madrid, España.

2 Universidad Nacional de Colombia, Sede Medellín. Facultad de Ciencias, Escuela de Química, Grupo de Química de los Productos Naturales y los Alimentos, Medellín, Colombia. * Corresponding author. E-mail: dldurango@unal.edu.co Tel. +57-4-4309888 Ext. 46367

3 Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Medellín, Colombia.

 

Received April 15, 2015;
Accepted September 29, 2015.

 

Abstract

Microbial transformation of propenylbenzenes may offer a cleaner and cheaper alternative to natural production of flavors and fragrances. In the present study, the biotransformation of trans-anethole using cells of a Colombian strain of the fungus Colletotrichum acutatum was investigated. Initially, fungitoxicity of this compound against C. acutatum was evaluated; trans-anethole displayed a relatively weak toxiciiy against the microorganism (<70%, at 200 μg/mL and after 48 hours) and apparently a detoxification mechanism was present. Then, the microorganism was incubated with the substrate atroom conditions, using three different culture media (Czapek-Dox, Sabouraud and PDB). Results show that trans-anethole is mainly degraded through an epoxide-diol pathway (trans-anethole to anethole-epoxide, then to syn- and anti-anethole-diol, p-anisaldehyde, p-anisic acid and p-anisic alcohol). However, other minor metabolites [e.g. 3-(4-methoxyphenyl)-1-propanol, 1-(4-methoxyphenyl)-2-propanol, ethyl ester of anisic acid], possibly proceeding from other metabolic pathways were also found. Additionally, it was demonsfrated that: the concenfration of metabolic products is dependent on culture medium used, being anethole-diol the mapr product obtained in all media used. Interestingly, some of the compounds generated in the biotransformation have been utilized as flavors and fragrances. Based on the identified metabolites, a possible metabolic pathway of the biotransformation of trans-anethole by C. acutatum was proposed.

Keywords: fungitoxicity, biotransformation, C. acutatum, metabolic pathway, culture media.

 

Resumen

La transformación microbiana de propenilbencenos puede ofrecer una alternativa más limpia y económica para la producción natural de aromas y fragancias. En el presente estudio se investigó la biotransformación de trans-anetol usando células de una cepa colombiana del hongo Colletotrichum acutatum. Inicialmente, se evaluó la toxicidad de este compuesto contra C. acutatum; trans-anetol exhibió una toxicidad relativamente baja contra el microorganismo (<70%, a 200 μ/mL y 48 horas) y aparentemente se presentó un mecanismo de desintoxicación. Luego, el microorganismo se incubó con el sustrato a condiciones ambientales, usando tres medios de cultivo (Czapek-Dox, Sabouraud y PDB). Los resultados muestran que trans-anetol es degradado principalmente a través de una ruta epóxido-diol (trans-anetol a anetol-epóxido, luego a syn- y anti-anetol-diol, p-anisaldehido, ácido p-anísico y alcohol p-anísico). Sin embargo, también se encontraron otros metabolitos minoritarios [por ejemplo, 3-(4-metoxifenil)-1-propanol, 1-(4-metoxifenil)-2-propanol, éster etílico del ácido anísico], posiblemente procedentes de otras rutas metabólicas. Adicionalmente, se demostró que la concentración de los productos metabólicos es dependiente del medio de cultivo usado, siendo anetol-diol el producto mayoritario obtenido en todos los medios. Interesantemente, algunos compuestos generados en la biotransformación se han utilizado como aromas y fragancias. Basados en los metabolitos identificados, se propuso una posible ruta metabólica para la biotransformación de trans-anetol por C. acutatum.

Palabras clave: fungitoxicidad, biotransformación, C. acutatum, ruta metabólica, medios de cultivo.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Afanador-Kafuri, L., Minz, D., Maymon, M., Freeman, S. (2003). Characterization of Colletotrichum isolates from tamarillo, Passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology 93, 579-587.         [ Links ]

Baeza-Jimenéz, R., López-Martínez, L.X., García, H.S. (2014). Biocatalytic modification of food lipids: Reactions and applications. Revista Mexicana de Ingeniería Química 13, 29-47.         [ Links ]

Bauer, K., Garbe, D., Surburg, H. (2001). Common Fragrance and Flavor Materials: Preparation, Properties and Uses. 4th ed. Weinheim: Wiley-VCH. 293 p.         [ Links ]

Berlrand, B., Martínez-Morales, F., Trejo-Hernández, M.R. (2013). Fungal laccases: Induction and production. Revista Mexicana de Ingeniería Química 12, 473-488.         [ Links ]

Bicas, J.L., Silva, J.C., Dionisio, A.P., Pastore, G.M. (2010). Biotechnological production of bioflavors and functional sugars. Ciencia e Tecnología de Alimentos 30, 7-18.         [ Links ]

Borges, K.B., Borges, W.S., Durán-Patrón, R., Pupo, M.T., Bonato, P.S., Collado, I.G. (2009). Streeoselective biotransformations using fungi as biocatalysts. Tetrahedron: Asymmetry 20, 385-397.         [ Links ]

Bounds, S.V., Caldwell, J. (1996). Pathways of metabolism of [1'-14C]-trans- anelhole in the rat and mouse. Drug Metabolism and Disposition 24, 717-724.         [ Links ]

Chang, C.L., Cho, I.K., Li, Q.X. (2009). Insecticidal activity of basil oil, trans- anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. Journal of Economic Entomology 102, 203-209.         [ Links ]

Correa, Y.M., Durango, D.L., García, C.M. (2009). Transformación microbiana del arilpropanoide cinamaldehído con el hongo fitopatógeno Colletotrichum acutatum. Vitae 16, 83-91.         [ Links ]

De, M., De, A.K., Mukhopadhyay, R., Miró, M., Anerjee, A.B. (2001). Actividad antimicrobiana de Illicium verum Hook. f. Ars Pharmaceutica 42, 209-220.         [ Links ]

Elgendy, E.M., Khayyal, S.A. (2008). Oxidation reactions of some natural volatile aromatic compounds: anethole and eugenol. Russian Journal of Organic Chemistry 44, 823-829.         [ Links ]

Freire, R.S., Morais, S.M., Catunda-Junior, F.E., Pinheiro, D.C.N. (2005). Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds. Bioorganic and Medicinal Chemistry 13, 4353-4358.         [ Links ]

Fujita, K., Fujita, T., Kubo, I. (2007). Anethole, a potential antimicrobial synergist, converts a fungislatic dodecanol to a fungicidal agent. Phytotherapy Research 21, 47-51.         [ Links ]

Gasson, M.J., Kitamura, Y., McLauchlan, W.R., Narbad, A., Parr, A.J., Parsons, E.L.H., Payne, J., Rhodes, M.J.C., Walton .J. (1998). Metabolism of ferulic acid to vanillin. A bacterial gene of the enoylSCoA hydralase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. Journal of Biological Chemistry 273,4163-4170.         [ Links ]

Hall, M., Hauer, B., Sluermer, R., Kroulil, W., Faber, K. (2006). Asymmetric whole-cell bioreduction of an α, /β-unsaturated aldehyde (cilral): compeling prim-alcohol dehydrogenase and CC lyase activities. Tetrahedron: Asymmetry 17, 3058-3062.         [ Links ]

Han, D., Kurusarllra, S., Ryu, J.Y., Kanaly, R.A., Hur, H.G. (2012a). Production of natural fragrance aromatic acids by coexpression of trans-anethole oxygenase and p-anisaldehyde dehydrogenase genes of Pseudomonas putida JYR-1 in Escherichia coli. Journal of Agricultural and Food Chemistry 60, 11972-11979.         [ Links ]

Han, D., Ryu, J.Y., Kanaly, R.A., Hur, H.G. (2012b). Isolation of a gene responsible for the oxidation of trans-anelhole to para-anisaldehyde by Pseudomonas putida JYR-1 and ils expression in Escherichia coli. Applied and Environmental Microbiology 78, 5238-5246.         [ Links ]

Han, D., Ryu, J.Y., Lee, H., Hur, H.G. (2013a). Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds. Journal of the Korean Society for Applied Biological Chemistry 56, 125-133.         [ Links ]

Han, D., Sadowsky, M.J., Chong, Y., Hur, H.G. (2013b). Characterization of a self-sufficient trans-anethole oxygenase from Pseudomonas putida JYR-1. PlosOne 8, e73350.         [ Links ]

Hua, D., Ma, C., Lin, S., Song, L., Deng, Z., Maomy, Z., Zhang, Z., Yu, B., Xu, P. (2007). Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metaboliles. Journal of Biotechnology 130, 463-470.         [ Links ]

Huang, Y., Zhao, J., Zhou, L., Wang, J., Gong, Y., Chen, X., Guo, Z., Wang, Q., Jiang, W. (2010). Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15, 7558-7569.         [ Links ]

Kashi, F.J., Fooladi, J., Bayal, M. (2007). Application of biotransformation in flavor and fragrance industry. Pakistan Journal of Biological Sciences 10, 1685-1690.         [ Links ]

Kizil, S., Uyar, F., Sagir, A. (2005). Antibacterial activities of some essential oils against plant pathogens. Asian Journal of Plant Sciences 4, 225-228.         [ Links ]

Kim, S.G., Liem, A., Slewarl, B.C., Miller, J.A. (1999). New studies on trans- anethole oxide and trans-asarone oxide. Carcinogenesis 20, 1303-1307.         [ Links ]

Koeduka, T., Fridman, E., Gang, D.R., Vassao, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N., Pichersky, E. (2006). Eugenol and isoeugenol, characteristic aromatic conslituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America 103, 10128-10133.         [ Links ]

Kubo, I., Fujita, K., Nihei, K. (2008). Antimicrobial activity of anethole and related compounds from aniseed. Journal of the Science of Food and Agriculture 88, 242-247.         [ Links ]

León, R., Fernandes, P., Pinheiro, H.M., Cabral, J.M.S. (1998). Whole-cell biocatalysis in organic Enzyme and Microbial Technology 23, 483-500.         [ Links ]

Li, T., Rosazza, J.P. (2000a). The carboxylic acid reduction pathway in Nocardia. Purification and characterization of the aldehyde reductase. Journal of Industrial Microbiology and Biotechnology 25, 328-332.         [ Links ]

Li, T., Rosazza, J.P.N. (2000b). Biocatalytic synthesis of vanillin. Applied and Environmental Microbiology 66, 684-687.         [ Links ]

Longo, M.A., Sanromán, M.A. (2006). Production of food aroma compounds: microbial and enzymatic methodologies. Food Technology and Biotechnology 44, 335-353.         [ Links ]

Mishra, S., Sachan, A., Sachan, S.G. (2013). Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. Journal of Industrial Microbiology and Biotechnology 40, 545-550.         [ Links ]

Mohammed, M.J. (2009). Isolation and identification of anethole from Pimpinella anisum L. fruil oil. An antimicrobial sludy. Journal of Pharmacy Research 2, 915-919.         [ Links ]

Nakagawa, Y., Suzuki, T. (2003). Cytotoxic and xenoestrogenic effects via biotransformation of trans-anethole on isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. Biochemical Pharmacology 66, 63-73.         [ Links ]

Newberne, P., Smilh, R.L., Doull, J., Goodman, J.I., Munro, I.C., Portoghese, P.S., Wagner, B.M., Weil, C.S., Woods, L.A., Adams, T.B., Lucas, C.D., Ford, R.A. (1999). The FEMA GRAS assessment of trans-anelhole used as a flavouring substance. Food and Chemical Toxicology 37, 787-811.         [ Links ]

Overhage, J., Sleinbüchel, A., Prieferl, H. (2006). Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. Journal of Biotechnology 125, 369-376.         [ Links ]

Palmerín-Carreño, D.M., Rutiaga-Quiñones, O.M., Verde-Calvo, J.R., Huerta-Ochoa, S. (2014). Bioconversion of (+)-Nookatone by Botryodiplodia theobromae using a membrane aerated biofilm reactor. Revista Mexicana de Ingeniería Química 13, 757-764.         [ Links ]

Passreiter, C.M., Wilson, J., Andersen, R., Isman, M.B. (2004). Metabolism of thymol and trans-anethole in larvae of Spodoptera litura and Trichoplusia ni (Lepidoplera: Nocluidae). Journal of Agricultural and Food Chemistry 52, 2549-2551.         [ Links ]

Priefert, H., Rabenhorst, J., Steinbuchel, A. (2001). Biotechnological production of vanillin. Applied Microbiology and Biotechnology 56, 296-314.         [ Links ]

Rabenhorst, J. (1996). Production of methoxyphenol type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Applied Microbiology and Biotechnology 46, 470-474.         [ Links ]

Ryu, J., Seo, J., Lee, Y., Lim, Y., Ahn, J.H., Hur, H.G. (2005). Identification of syn- and anti-anelthole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated bacterium Pseudomonas putida JYR-1. Journal of Agricultural and Food Chemistry 53, 5954-5958.         [ Links ]

Saerens, S.M.G., Delvaux, F.R., Verstrepen, K.J., Thevelein, J.M. (2010). Production and biological function of volatile estres in Saccharomyces cerevisiae. Microbial Biotechnology 3, 165-177.         [ Links ]

Serra, S., Fuganti, C., Brenna, E. (2005). Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology 23, 193-198.         [ Links ]

Seshadri, R., Lamm, A.S., Khare, A., Rosazza, J.P.N. (2008). Oxidation of isoeugenol by Nocardia iowensis. Enzyme and Microbial Technology 43, 486-494.         [ Links ]

Shimoni, E., Ravid, U., Shoham, Y. (2000). Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. Journal of Biotechnology 8, 1-9.         [ Links ]

Shimoni, E., Baasov, T., Ravid, U., Shoham, Y. (2002). The trans-anelhole degradation pathway in an Arthrobacter sp. Journal of Biological Chemistry 277, 11866-11872.         [ Links ]

Shimoni, E., Baasov, T., Ravid, U., Shoham, Y. (2003). Biotransformations of propenylbenzenes by an Arthrobacter sp. and ils t-anelhole blocked mutants. Journal of Biotechnology 105, 61-70.         [ Links ]

Shitu, J.O., Chartrain, M., Woodley, J.M. (2009). Evaluating the impact of substrate and product concentation on a whole-cell biocatalyst during a Baeyer-Villiger reaction. Biocatalysis and Biotransformation 27, 107-117.         [ Links ]

The Council of the European Communities Council Directive 88/388/EEC of 22 June 1988.         [ Links ]

US Code of Federal Regulations 21, 101.22a.3. Food and Drug Administration, Washington, D.C. 1985.         [ Links ]

Van den Ban, E.C.D., Willemen, H.M., Wassink, H., Laane, C., Haaker, H. (1999). Bioreduction of carboxylic acids by Pyrococcus furiosus in batch cultures. Enzyme and Microbial Technology 25, 251-257.         [ Links ]

Velasco, R., Gil, J.H., García, C.M., Durango, D.L. (2010). Production of 2-phenyletanol in the biotransformation of cinnamyl alcohol by the plant pathogenic fungus Colletotrichum acutatum. Vitae 17, 272-280.         [ Links ]

Velasco, R., Gil, J.H., García, C.M., Durango, D.L. (2012). Structural modification of trans-cinnamic acid using whole cells of Colletotrichum acutatum. Revista Facultad de Ingeniería Universidad de Antioquia 63, 20-29.         [ Links ]

Wohlgemuth, R. (2010). Biocatalysis - key lo sustainable industrial chemistry. Current Opinion in Biotechnology 21, 713-724.         [ Links ]

Xu, P., Hua, D., Ma, C. (2007). Microbial Transformation of propenylbenzenes for natural flavor production. Trends in Biotechnology 25, 571-576.         [ Links ]

Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2007a). Purification, characterization and gene cloning of isoeugenol-degrading enzyme from Pseudomonas putida IE27. Archives of Microbiology 187, 511-517.         [ Links ]

Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2007b). Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Applied Microbiology and Biotechnology 73, 1025-1030.         [ Links ]

Zhang, Y., Xu, P., Han, S., Yan, H., Ma, C. (2006). Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Applied Microbiology and Biotechnology 73, 771-779.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons