Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista mexicana de ingeniería química
versão impressa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México Set./Dez. 2015
Ingeniería de alimentos
Characterization of chitosan nanoparticles added with essential oils. In vitro effect on Pectobacterium carotovorum
Caracterización de nanopartículas de quitosano adicionadas con aceites escenciales. Efecto in vitro en Pectobacterium carotovorum
M.E. Sotelo-Boyás1, G. Valverde-Aguilar2, M. Plascencia-Jatomea3, Z.N. Correa-Pacheco4, A. Jiménez-Aparicio1, J. Solorza-Feria1, L. Barrera-Necha1, S. Bautista-Baños1*
1 Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos. Carretera Yautepec-Jojutla, km 6.8, San Isidro, Yautepec, Morelos, México CP 62730. *Corresponding author. E-mail: sbautis@ipn.mx
2 Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaría, Instituto Politécnico Nacional. Legaría 694, Colonia Irrigación, Miguel Hidalgo, CP 11500 Ciudad de México, Distrito Federal, México.
3 Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, PO Box 1658, Hermosillo, Sonora CP 83000, México. D.F.
4 CONACYT Research Fellow -Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos. Carretera Yautepec-Jojutla, km 6.8, San Isidro, Yautepec, Morelos, México CP 62730.
Received November 6, 2014;
Accepted September 12, 2015.
Abstract
Chitosan is a biomacromolecule with antibacterial activity against a broad sectrum of bacteria, while essential oils are known to possess antimicrobial activity. In this work, lime and thyme essential oils were encapsulated in chitosan nanoparticles by nanoprecipitation method. The success of the encapsulation was confirmed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and Z Potential. The obtained nanoparticles exhibited a regular distribution and spherical shape with size range of 117-250nm. The antibacterial activity of the chitosan nanoparticles and chitosan nanoparticles added with thyme essential oil presented a significant inhibitory effect on the growth of Pectobacterium carotovorum.
Keywords: phytopathogenic bacteria, thyme, lime, antimicrobials, polymer.
Resumen
El quitosano es una biomacromolécula con actividad antibacterial contra un amplio espectro de bacterias, mientras que los aceites esenciales son reconocidos por poseer actividad antimicrobiana. En este trabajo, aceites esenciales de limón y tomillo se encapsularon en nanopartículas de quitosano, mediante el método de nanoprecipitación. El éxito de la encapsulación se confirmó mediante Microscopía Electrónica de Barrido (SEM), Espectroscopia de Energía Dispersa (EDS), Espectroscopia Infrarroja de Transformada de Fourier (FTIR) y Potencial Z. Las nanopartículas que se obtuvieron presentaron una distribución regular y forma esférica con un tamaño promedio de 117-250 nm. La actividad antibacteriana de las nanopartículas de quitosano y nanopartículas de quitosano adicionadas con aceites esenciales de tomillo tuvieron un efecto inhibitorio significativo en el desarrollo de Pectobacterium carotovorum.
Palabras clave: bacterias patógenas, tomillo, limón, antimicrobianos, polímero.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
We would like to thanks to the National Council of Science and Technology (CONACYT) through a grant for the PhD in Development of Biotic Products within the Doctoral Program of the Centre for Development of Biotic Products-National Polytechnic Institute (CONACYT 166354). The authors also acknowledge funding from CONACYT 251151 and SIP 20150030 projects and the assistance of Dr. Miguel Angel Aguilar-Méndez of CICATA-Legaria-IPN, for his assistance in making Z potential measurements and to Mario García (SEM/EDS) for technical assistance (IPN).
References
Ali, S. and Joshi, M. (2011). Synthesis and characterization of chitosan nanoparticles with enhanced antimicrobial activity. International Journal of Nanoscience 10, 979-984. [ Links ]
Agrios, G.N. (2005). Fitopatología. UTEHA. Noriega Editores. México. [ Links ]
Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils-A review. Food and Chemical Toxicology 46, 446-475. [ Links ]
Bhat, K., Bhat, N., Mohiddin, F., Mir, S. and Mir, M. (2012). Management of post-harvest Pectobacterium soft rot of cabbage (Brassica oleracea var capitata L.) by biocides and packing material. African Journal of Agricultural Research 7, 4066-4074. [ Links ]
Bilati, U., Allémann, E. and Doelker, E. (2005). Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences 24, 67-75. [ Links ]
Calvo, P., Remunán-López, C., Vila-Jato, J. L. and Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carrier. Journal of Applied Polymer Science 63, 125-132. [ Links ]
Carlson, R., Taffs, R., Davison, W. and Stewart, P. (2008). Anti-biofilm properties of chitosan-coated surfaces. Journal of Biomaterials Science Polymer Edition 19, 1035-1046. [ Links ]
Center of Diseace Control and Prevention (CDC), 2010. Disponible en: http://www.cdc.gov/. Accesado. Enero 2014.
Çetin, B., Çakmakçi, S. and Çakmakçi, R. (2011). The investigation of antimicrobial activity of thyme and oregano essential oils. Turkish Journal of Agriculture and forestry 35, 145-154. [ Links ]
Cota-Arriola, O., Cortez-Rocha, M., Burgos-Hernández, A., Ezquerra-Brauer, J. and Plascencia-Jatomea, M. (2013). Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. Review. Journal of the Science of Food and Agriculture 93, 1525-1536. [ Links ]
Chen, F., Shi, Z., Neoh, K. and Kang, E. (2009). Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnology and Bioengineering 104, 30-39. [ Links ]
Du, W., Olsen, C., Avena-Bustillos, R., Mchugh, T., Levin, C., Mandrell, M. and Friedman, M. (2009). Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods. Journal of Food Science 74, 390-397. [ Links ]
Hibar, K., Daami-Remadi, M. and Mahjoub, M. (2007). First report of Pectobacterium carotovorum subsp. carotovorum on tomato plants in Tunisia. Tunisian Journal of Plant Protection 2, 1-5. [ Links ]
Hosseini, S.F., Zandi, M., Rezaei, M. and Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers 95, 50-56. [ Links ]
Lara-Cortez, E. (2006). Elaboración de un empaque biodegradable con actividad antimicrobiana a base de proteína de suero. Tesis de Maestría en Ciencias. Programa de Postgrado en Alimentos del Centro de la República (PROPAC). Universidad Autónoma de Querétaro. México. [ Links ]
Luque-Alcaraz, A., Lizardi, J., Goycoolea, F., Valdez, M., Acosta, A., Iloki-Assanga, S., Higuera-Ciapara, I. and Arguelles-Monal, W. (2012). Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. Journal of Nanomaterials, 1-7.
Kaur, P., Thakur, R. and Choudhary, A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. International Journal of Scientific & Technology Research 1, 6-15. [ Links ]
Keawchaoon, L. and Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces 84, 163-171. [ Links ]
Martínez-Camacho, A., Cortez-Rocha, M., Ezquerra-Brauer, J., Graciano-Verdugo, A., Rodríguez-Félix, F., Castillo-Ortega, M., Yépiz-Gómez, M. and Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers 82, 305-315. [ Links ]
Martínez-Camacho, A., Cortez-Rocha, M., Castillo-Ortega, M., Burgos-Hernández, A., Ezquerra-Brauer, J. and Plascencia-Játomea, M. (2011). Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Review. Polymer International 60, 1663-1669. [ Links ]
Maza, I. and Hernández, C. (2007). Caracterización fisicoquímica de quitosano para su aplicación como biosorbente de metales. Revista de la Facultad de Ciencias de la UNI 11, 1-5. [ Links ]
Oussalah, M., Caillet, S., Saucier, L. and Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414-420. [ Links ]
Pensel, P., Maggiore, M., Gende, L., Eguaras, M., Denegri, M. and Elissondo, M. (2014). Efficacy of essential oils of Thymus vulgaris and Origanum vulgare on Echinococcus granulosus. Interdisciplinary Perspectives on Infectious Diseases 693289, 1-12. [ Links ]
Qi, L., Xu, Z., Jiang, X., Hu, C. and Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339, 2693-2700. [ Links ]
Radzig, M., Nadtochenko, V., Koksharova, Kiwi, J., Lipasova, V. and Khmel, I. (2013). Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces B: Biointerfaces 102, 300-306. [ Links ]
Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padillá, G., Térres-Rojas, E., Alia-Tejacal, I., Barrera-Necha, L., Hernández-López, M., and Bautista-Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5a in fresh tomatoes. Crop Protection 38, 1-6. [ Links ]
Ronquillo, E. (2007). Evaluación del potencial antimicrobiano de películas comestibles con aceites esenciales in vitro e in situ. Tesis de Maestría en Ciencias. Universidad Autónoma Metropolitana. Unidad Iztapalapa. México. DF. [ Links ]
Salazar-Leyva, J.A., Lizardi-Mendoza, J., Ramírez-Suárez, J.C., García-Sánchez, G., Ezquerra-Brauer, J.M., Valenzuela-Soto, E.M., Carvallo-Ruíz, M.G., Lugo-Sánchez, M.E y Pacheco-Aguilar, R. (2014). Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicaciones. Revista Mexicana de Ingeniería Química 13, 129-150. [ Links ]
Sánchez-Rangel, J.C., Benavides, J. and Jacobo-Vázquez, D.A. (2014) Abiotic stress based bioprocesses for the production of high value antioxidant phenolic compound in plants: an overview. Revista Mexicana de Ingeniería Química 13, 49-61. [ Links ]
Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A. and González-Martínez, C. (2011). Antimicrobial activity of polysaccharide films containing essential oils. Food Control 22, 1302-1310. [ Links ]
Sánchez-González, L., González-Martínez, C., Chiralt, A. and Cháfer, M. (2010). Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. Journal of Food Engineering 98, 443-452. [ Links ]
Sanpui, P., Murugadoss, A., Durga P., Sankar, S. and Chattopadhyay, A. (2008). The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. International Journal of Food Microbiology 124, 142-146. [ Links ]
Santacruz-Vázquez, V., Santacruz-Vázquez, C. y Laguna-Cortés, J.O. (2013) Diseño de un jugo mínimamente procesado adicionado con micro y nanocápsulas de ácido fólico y su uso como vehículo para la ingesta en ratas wistar. Revista Mexicana de Ingeniería Química 12, 177-191. [ Links ]
Sheeladevi, A. and Ramanathan, N. (2012). Antibacterial activity of plant essential oils against food borne bacteria. International Journal of Pharmaceutical & Biological Archives 3, 1106-1109. [ Links ]
Shi, Z., Neoh, K., Kang, E. and Wang, W. (2006). Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27, 2440-2449. [ Links ]
Smadja, B., Latour, X., Trigui, S., Burini, J.F., Chevalier, S. and Orange, N. (2004). Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Journal of Microbiology 50, 19-27. [ Links ]
Toth, I., Bell, K., Holeva, M. and Birch, P. (2003). Soft rot erwiniae: from genes to genomes. Molecular Plant Pathology 4, 17-30. [ Links ]
Thummanoon, P., Benjakul, S. and Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry 134, 1571-1579. [ Links ]
Velasco-Rodríguez, V., Cornejo-Mazón, M., Flores-Flores, J.O., Gutíerrez-López G.F. and Hernández-Sánchez, H. (2012). Preparation and properties of alpha-lipoic acid-loaded chitosan nanoparticles. Revista Mexicana de Ingeniería Química 11, 155-161. [ Links ]
Xu, Y. and Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 250, 215-226. [ Links ]
Yien, L., Mohamad, N., Sarwar, A. and Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials 1-9.
Yoksan, R., Jirawutthiwongchai, J. and Arpo, K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation process. Colloids and Surfaces B: Biointerfaces 76, - [ Links ]297.
Zhao, Y., Li, P., Huang, K., Wang, Y., Hu, H. and Sun, Ya. (2013). Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World Journal of Microbiology and Biotechnology 29, 411-420. [ Links ]