SciELO - Scientific Electronic Library Online

vol.14 número1Producción de trehalosa a partir de levaduras no-convencionalesExtracción y caracterización de proteasas de pepino de mar Isostichopus fuscus recolectado en el Golfo de California, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.1 Ciudad de México Jan./Abr. 2015




Determination of antioxidant and chelating activity of protein hydrolysates from spirulina (Arthrospira maxima) obtained by simulated gastrointestinal digestion


Determinación de actividad antioxidante y quelante de hidrolizados proteicos de espirulina (Arthrospira maxima) obtenidos por simulación de digestión gastrointestinal


N. Martínez-Palma1, A. Martínez-Ayala2 y G. Dávila-Ortíz1*


1 Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio, Esq. Plan de Ayala S/N, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340 México, D. F., México. *Corresponding author. E-mail: Tel.: +52 5557296000x62462; fax: +52 5557296000.

2 Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, Km. 6, 62731 Yautepec, Morelos, México.


Received November 30, 2014
Accepted January 16, 2015



Spirulina is a cyanobacteria that has been used as food since ancient times, for example in Mexico it was consumed by the Aztecs. Its high protein content, distribution and amino acid composition suggests the presence of important peptides encrypted within the sequences of parent proteins, that after been released by digestive process they could show an antioxidant effect. Our present study examined the above hypothesis through the determination of the antioxidant and chelating activity of two Spirulina samples (SpRPh: Spirulina reduced of pholyphenols and PCBEx: extract of phycobiliproteins), subjected both to sequential hydrolysis with pepsin and pancreatin. At the end of the enzymatic action, extensive hydrolysates with a degree of hydrolysis (% DH) of 31.4 and 36.7%, for SpRPh and PCBEx respectively, were obtained. By determining the electrophoretic profiles, the degradadon of characteristic bands of Spirulina proteins and the release of smaller peptides were observed. As a general trend, the antioxidant activity determined by different methods improved after simulating gastrointestinal digestion. On the other hand, protein hydrolysates from both groups showed Cu2+ and Fe2+ chelating; activity.

Key words: spirulina, protein hydrolysates, antioxidant activity, chelating activity.



La espirulina es una cianobacteria que se ha utilizado en México como alimento desde la época de los aztecas. Su alto contenido de proteína, composición y secuencia de amino ácidos sugiere la presencia de péptidos encriptados dentro de las proteínas nativas, que después de ser liberados por la digestión gastrointestinal, pueden ejercer un efecto antioxidante. En el presente trabajo, se determinó la actividad antioxidante y quelante de dos muestras de espirulina (SpRPh: espirulina reducida en polifenoles y PCBEx: extracto de ficobiliproteínas), sometidas a hidrólisis secuencial con pepsina y pancreatina. Se obtuvieron hidrolizados extensivos que mostraron grados de hidrólisis de 31.4% y 36.7% para SpRPh y PCBEx respectivamente. A traves de los perfiles electroforéticos, se observó) la degradación de bandas características de las proteínas de espirulina y la liberación de péptidos de menor tamaño. En general, la actividad antioxidante determinada por diferentes métodos se incrementó por acción de la hidrólisis enzimática. Por otro lado, los hidrolizados protéicos de ambas muestras mostraron actividad quelante de Fe2+ y Cu2+.

Palabras clave: espirulina, hidrolizados protéicos, actividad antioxidante, actividad quelante.





This research was partially funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through doctoral scholarship 216217 and a scholarship from the Programa Institucional de Formación de Investigadores (PIFI).



AOAC. (1997). In William Horwitz (Ed.), Official methods of analysis (17th ed.). Washington, D.C: Association of Official Analytical Chemists.         [ Links ]

Ashmead, H., Graff, D. and Ashmead, H. (1985). Intestinal absorption of metal ions and chelates. Springfield, IL: Charles C. Thomas.         [ Links ]

Bennett, A., and Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology 58,419-435.         [ Links ]

Bermejo, P., Pinero, E. and Villar. (2008). Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chemistry 110, 436-445.         [ Links ]

Capelli, B., and Cysewky, R. (2010). Potential health benefits of spirulina microalgae. NUTRA foods 9, 19-26.         [ Links ]

Carter, P. (1971). Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Analytical Biochemistry 40, 450-458.         [ Links ]

Chacon, L. and Gonzalez, M. (2010). Microalgae for "healthy" foods-possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety 9, 655-675.         [ Links ]

Chaiklahan, R., Chirasuwan, N. and Bunnag, B. (2012). Stability of phycocyanin extracted from spirulina sp.: influence of temperature, pH and preservatives. Process Biochemistry 47, 659-664.         [ Links ]

Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y. and Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chemistry 107, 1483-1485.         [ Links ]

El-Baky, H. (2009). Production of phenolic compounds from spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. African Journal of Pharmacy and Pharmacology 3, 133-139.         [ Links ]

Eriksen, N. T. (2008). Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology 80, 1-14.         [ Links ]

Guterridge, J., and Halliwell, B. (2010). Antioxidants: molecules, medicines and myths. Biochemical and Biophysical Research Communications 393, 561-564.         [ Links ]

Jiang, T., Zhang, J., Chang, W. and Liang, D. (2001). Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophysical Journal 81, 1171-1179.         [ Links ]

Johansen, J. and Harris, A. (2005). Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular Diabetology 4, 5.         [ Links ]

Jomova, M. and Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65-87.         [ Links ]

Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis. Food Chemistry 102, 1317-1327.         [ Links ]

Liao, X., Zhang, B., Wang, X., Yan, H. and Zhang, X. (2011). Purification of c-phycocyanin from spirulina platensis by single-step ion-exchange chromatography. Chromatographia 73, 291296.         [ Links ]

Liu, L., Chen, X., Zhang, Y. and Zhou, B. (2005). Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochimica et Biophysica Acta 1708, 133-142.         [ Links ]

Megías, C., Pedroche, J. and Yust, M. (2008). Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT-Food Science and Technology 41, 1973-1977.         [ Links ]

Ponce-Palafox, J. T., Arredondo-Figueroa J. L. and Vernon-Carter E. J. (2006). Carotenoids from plants used in diets for the culture of the pacific white shrimp (Litopenaeus vannamei). Revista Mexicana de Ingeniería Química 5, 157-165.         [ Links ]

Qian, Z.-J., Jung, W.-K., Byun, H.-G. and Kim, S.- K. (2008). Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technology 99, 3365-3371.         [ Links ]

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine 26, 1231-1237.         [ Links ]

Saiga, A., Tanabe, S. and Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry 51, 3661-3667.         [ Links ]

Samaranayaka, A. G. P. and Li-chan, E. C. Y. (2011). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal ofFunctional Foods 3, 229-254.         [ Links ]

Sarmadi, B. H. and Ismail, A. (2010). Peptides Antioxidative peptides from food proteins: a review. Peptides 31, 1949-1956.         [ Links ]

Sekar, S. and Chandramohan, M. (2007). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology 20, 113-136.         [ Links ]

Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal ofAgricultural and Food Chemistry 40, 945-948        [ Links ]

Silveira, S. T., Burkert, J. F. M., Costa, J. V., Burkert, C. V., and Kalil, S. J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology 98, 1629-1634.         [ Links ]

Singleton, V., Orthofer, R. and Lamuela-Raventos, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299, 152-178.         [ Links ]

Velioglu, Y. and Mazza, G. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46, 4113-4117.         [ Links ]

Visconti, R. and Grieco, D. (2009). New insights on oxidative stress in cancer. Current Opinion in Drug Discovery & Development 12, 240-245.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons