Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista mexicana de ingeniería química
versão impressa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México Dez. 2014
Ingeniería ambiental
Evaluación de almidones de malanga (Colocasia esculenta) como agentes coadyuvantes en la remoción de turbiedad en procesos de potabilización de agua
Evaluation of taro starches (Colocasia esculenta) as flocculant aids in turbidity removal for water treatment process
R. López-Vidal1, J.R. Laines-Canepa1*, J.R. Hernández-Barajas1 y M.A. Aparicio-Trápala2
1 Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Biológicas. Carretera Villahermosa-Cárdenas km 0.5 S/N, Bosques de Saloya, Villahermosa 86150, Tabasco, México. * Autor para la correspondencia. E-mail: : josra_2001@yahoo.com.mx Tel. y Fax: 99 33 54 43 08.
2 Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Agropecuarias. Carretera Villahermosa-Teapa km 25+2, La Huasteca 2da. Sección 86061, Tabasco, México.
Recibido 2 de Febrero 2014.
Aceptado 1 de Agosto de 2014.
Resumen
En este estudio se propone el empleo de almidones modificados de malanga (Colocasia esculenta) como agentes coadyuvantes en el proceso de coagulación-floculación enfocado a la potabilización de agua. Con este propósito se sintetizarón tres tipos de almidones fisicoquímicamente modificados a partir del almidón nativo: fosfatado, entrecruzado y pregelatinizado. A partir de una prueba experimental estandarizada se evaluó la eficiencia de remoción de turbiedad y de color de estos agentes en muestras sintéticas representativas de aguas superficiales de Tabasco con una turbiedad inicial de 400 UNT. Los resultados de la evaluación indican que no existe diferencia significativa entre el empleo de almidón nativo en comparación con los almidones modificados y en referencia al nivel de remoción de turbiedad alcanzado. Al respecto, la remoción máxima de turbiedad fue de 95% utilizando 15 mg/L de almidón nativo combinado con 35mg/L de Al2(SO4)3. Por su parte, la remoción máxima de color fue de 99.2% dosificando 25 mg/L de almidón fosfatado de malanga con 25 mg/L de sulfato. En consecuencia, este estudio sugiere que el empleo de agentes ambientalmente amigables basados en almidones de malanga permitiría reducir las cantidades de Al2(SO4)3 típicamente dosificadas en el proceso de coagulación-floculación en plantas de tratamiento de agua.
Palabras clave: coagulación-floculación, potabilización, almidón, malanga, Colocasia esculenta.
Abstract
In this study the use of modified starches from taro (Colocasia esculenta) as aid agents in the coagulation-flocculation process focused on water treatment has been proposed. For this purpose, three types of physicochemically modified starches from native starch were synthesized: Phosphated, crosslinked and pregelatinized. Based on a standardized experimental test, the removal efficiency of turbidity and color in representative samples of Tabasco's surface waters with an initial turbidity of 400 UNT was evaluated. The results referred to the level of turbidity removal showed no significant difference between the use of native starch compared to modified starches. In this regard, the maximum turbidity removal was 95% using 15 mg/L of native starch combined with 35 mg/L of Al2(SO4)3. On the other hand, the maximum color removal of 99.2% was reached by using 25 mg/L of phosphated starch with 25 mg/L of sulfate. Accordingly, this study suggests that the use of environmentally friendly agents based on taro starches would reduce the amount of Al2(SO4)3 typically used in the coagulation-flocculation process in water treatment plants.
Keywords: coagulation-flocculation, water treatment, starch, taro, Colocasia esculenta.
DESCARGAR ARTÍCULO EN FORMATO PDF
Agradecimientos
Los autores agradecen a la Universidad Juárez Autónoma de Tabasco, especialmente por el financiamiento otorgado a través del Programa de Fomento a la Investigación y Consolidación de los Cuerpos Académicos (PFICA) Convocatoria 2011, Proyecto No. UJAT 2011 CA07-20.
Referencias
Anastasakis, K., Kalderis, D., Diamadopoulos, E. (2009). Flocculation behaviour of mallow and okra mucilage in treating wastewater. Desalination 249, 786-791. [ Links ]
Aparicio, M. (2003). Caracterización fisicoquímica de los almidones nativos y modificados de yuca (Manihot esculenta Crantz), camote (Ipomeea batata Lam) y plátano (Musa cavendish). Tesis de Doctorado. Instituto Tecnológico de Veracruz. [ Links ]
Antonio-Estrada, C., Bello-Pérez, L.A., Martínez-Sánchez, C.E., Montañez-Soto, J.L., Jimenez-Hernández, J. y Vivar-Vera, M.A. (2009). Enzymatic production of maltodextrins from taro (Colocasia esculenta) starch. CyTA-Journal of Food 7, 233-241. [ Links ]
ASTM D2035-08 (2008). Standard practice for coagulation-flocculation jar test of water. American Society for Testing and Materials, ASTM International, West Conshohocken, USA. [ Links ]
Beltrán-Heredia, J. y Sánchez-Martín, J. (2009). Municipal wastewater treatment by modified tannin floculant agent. Desalination 249, 353-358. [ Links ]
Bhuptawat H., Folkard G. K. y Chaudhari S. (2007). Innovative physic-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. Journal of Hazardous Materials 142, 477-482. [ Links ]
Bidhendi, G.N., Shahriari, T. y Shahriari, S. (2009). Plantago ovata efficiency in elimination of water turbidity. Journal of Water Resource and Protection 1, 90-98. [ Links ]
Bolto, B. y Gregory J. (2007). Organic polyelectrolytes in water treatment. Water Research 41, 2301-2324. [ Links ]
Bratskaya, S., Schwarz, S. y Chervonetsky, D. (2004). Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research 38, 2955-2961. [ Links ]
Broin, M., Santaella, C., Cuine, S., Kokou, K., Peltier, G. y Joet, T. (2002). Flocculent activity of a recombinant protein from Moringa oleifera Lam seeds. Applied Microbiology and Biotechnology 60, 114-119. [ Links ]
Dendy, D.A.V. (2001). Composite and alternative flours. En: Cereals and Cereal Products. Chemistry and Technology, (D. A. Dendy y B. J. Dobraszczyk eds.) Pp. 263-275, Aspen Publishers Inc., Maryland. [ Links ]
Environmental Protection Agency, EPA (1983). Turbidity (nephelometric) methods for chemicals analysis of water and wastes. Environmental Protection Agency. Environmental Monitoring as Supporting Laboratory. Office of Research and Development EUA, Cincinnati. [ Links ]
Fabris, R., Chow, C.W.K. y Drikas, M.E. (2010). Evaluation of chitosan as a natural coagulant for drinking water treatment. Water Science and Technology 61, 2119-2128. [ Links ]
FAO y WHO. (2002). Diet, nutrition and the prevention of chronic diseases. Report of a joint FAO/WHO expert consultation. Vol. 916WHO Technical Report Series. [ Links ]
Food and Agriculture Organization, FAO (2014). Recurso electrónico: http://apps.fao.org/faostat, ultimo acceso: 16 de enero de 2014.
Flores-Gorosquera, E., García-Suárez, F.J., Flores-Huicochea, E., Núñez-Santiago, M.C., González-Soto, R.A., Bello-Pérez, L.A. (2004). Rendimiento del proceso de extracción de almidón a partir de frutos de plátano (Musa paradisiaca). Estudio en planta piloto. Acta Científica de la Sociedad Venezolana 55, 86-90. [ Links ]
Folkard, G., Sutherland, J., Shaw, R. (2001) Water clarification using Moringa oleifera seed coagulant. En: The miracle tree. The multiple attributes ofmoringa (L. J. Furglie ed.) Church World Service, Dakar, Senegal, Pp. 29-43. [ Links ]
Ghebremichael, K., Hutman, B. (2004). Alum sludge dewatering using Moringa oleifera as conditioner. Water, Air and Soil Pollution 158, 153-167. [ Links ]
Ghebremichael, K.A., Gunaratna, K.R., Dalhammar, G. (2006). Single step ion exchange purification of the coagulant protein from Moringa oleifera seed. Applied Microbiology and Biotechnology 70, 526-532. [ Links ]
Jeon, J.R., Kim, E.J., Kim, Y., Murugesan, K., Kim, J.H. y Chang Y.S. (2009). Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere 77, 1090-1098. [ Links ]
Kalogo, Y., M'Bassiguie, S.A. y Verstraete, W. (2001). Enhancing the start-up of a UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds. Applied Microbiology and Biotechnology 55, 644-651. [ Links ]
Katayon, S., Ng, S.C., Megat Johari, M.M.N. y Abdul Ghani L.A. (2006). Preservation of coagulation efficiency of Moringa oleifera, a natural coagulant. Biotechnology and Bioprocess Engineering 11, 489-495. [ Links ]
Kumari, P., Sharma, P., Srivastava, S., Srivastava, M.M. (2005) Arsenic removal from the aqueous system using plant biomass: a bioremedial approach. Journal of Industrial Microbiology and Biotechnology 32, 521-526. [ Links ]
Laines-Canepa, J.R., Goñi-Arevalo, J.A., Adams-Schroeder, R.H. y Camacho-Chiu, W. (2008). Mezclas con potencial coagulante para tratamiento de lixiviados de un relleno sanitario. Interciencia 33, 22-28. [ Links ]
Lim, S., Seib, P.A. (1993). Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chemistry 70, 137-144. [ Links ]
Martínez, D., Chávez, M., Díaz, A., Chacín, E. y Fernández, N. (2003). Performance of Cactus lefaria to use like coagulating in the water clarification. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 26, 27-33. [ Links ]
Mishra, A. y Bajpai, M. (2005). Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. Journal of Hazardous Materials B118, 213-217. [ Links ]
Oates, C.G. (1997). Towards an understanding of starch granule, structure and hydrolysis. Trends in Food Science and Technology 81, 375-382. [ Links ]
Okuda, T., Baes, A.U., Nishijima, W. y Okada, M. (1999). Improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Research 33, 3373-3378. [ Links ]
Okuda, T., Baes, A.U., Nishijima, W. y Okada, M. (2001). Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research 35, 405-410. [ Links ]
Onwueme, I. (1999). Taro cultivation in Asia and the Pacific. Food and Agriculture Organization (FAO) of the United Nations Regional Office for Asia and the Pacific, Bangkok. [ Links ]
Pérez-Sicairos, S., Morales-Cuevas, J.B., Félix-Navarro, R.M., Hernández-Calderón, O.M. (2011). Evaluation of the electro-coagulation process for the removal of turbidity of river water, wastewater and pond water. Revista Mexicana de Ingeniería Química 10, 79-91. [ Links ]
Qudsieh, I.Y., I-Razzi, A.F., Kabbashi, N.A., Mirghani, M.E.S., Fandi, K.G., Alam, M.Z., Muyibi, S.A. y Nasef, M.M. (2008). Preparation and characterization of a new coagulant based on the sago starch biopolymer and its application in water turbidity removal. Journal of Applied Polymer Science 109, 3140-3147. [ Links ]
Romero-Bastida, C.A., Zamudio-Flores, P.B., Bello-Pérez, L.A. (2011). Antimicrobianos en películas de almidón oxidado de plátano: Efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453. [ Links ]
Sandoval-Arreola, M.M. (2013). Desarrollo de un polímero natural para el tratamiento de aguas superficiales. Tesis de Maestría en Ciencias Ambientales, Universidad Juárez Autónoma de Tabasco, México. [ Links ]
Sciban, M., Klasnja, M., Antov, M. y B. Skrbic. (2009). Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource Technology 100, 6639-6643. [ Links ]
Shogren, R. (2009). Flocculation of kaolin by waxy maize starch phosphates. Carbohydrate Polymers 76, 639-644. [ Links ]
Sincero, A.P., Sincero, G.A. (2003). Physical-chemical treatment ofwater and wastewater. CRC Press, First Ed., Boca Raton, Florida. [ Links ]
Solís-Silván, R., Laines-Canepa, J.R. y Hernández-Barajas, J.R. (2012). Mezclas con potencial coagulante para clarificar aguas superficiales. Revista Internacional de Contaminacioín Ambiental 28, 229-236. [ Links ]
Sonni, L., Oyewole, O.B., Adebowale, A.A. y Adebayo, K. (2003). Current trends in the utilization of roots and tubers for sustainable development. Food Based Approaches for a Healthy Nutrition 11, 23-28. [ Links ]
Valeriano, J., Chamorro, M., Rodrigo, A. (2013) Polielectrólitos Orgánicos Naturales en el Tratamiento de Agua para Consumo Humano. Universidad Peruana Unión. Revista de Investigación Universitaria 2, 88-95. [ Links ]
Xing, G., Zhang, S., Ju B, Yang J. (2005). Recent advances in modified starch as flocculant. The Proceedings of the 3rd International Conference on functional molecules, DaLian, China. [ Links ]
You, L., Lu, F., Qiao, Z. y Yin, Y. (2009). Preparation and Flocculation properties of cationic starch/chitosan crosslinking-copolymer. Journal of Hazardous Materials 172, 38-45. [ Links ]
Zamudio-Flóres, P.B. y Bello-Pérez, L.A. (2013). Elaboration and characterization of glycoprotein films obtained with the Maillard's reaction using acetylated starch and whey protein isolated. Revista Mexicana de Ingeniería Química 12, 401-413. [ Links ]