SciELO - Scientific Electronic Library Online

vol.13 número1Nanobiotecnología para el diagnóstico médicoModificación biocatalítica de lípidos alimentarios: reacciones y aplicaciones índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México abr. 2014




Trends in bioseparations


Tendencias en bioseparaciones


J. González-Valdez, K. Mayolo-Deloisa, M. González-González, M. Rito-Palomares*


Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México. *Corresponding author. E-mail: Tel. +52 81 8328-4132; Fax +52 81 8328-4136.


Received June 14, 2013;
Accepted November 4, 2013.



The biotechnology industry is changing every day to improve the purity, yield and throughput of products, besides becoming more effcient while using fewer resources. In this sense, this short review aims to present a general overview of the trends in bioseparations that will be met in the bioprocessing area of biotechnology in order to continue overcoming these challenges. It is identified that these tendencies will impact the following stages of the bioseparation train: product sources, primary recovery and purification. New approaches involving process integration, intensification and automation, microscaling and greener practices are addressed. Biotechnological processes will continue to evolve becoming the spearhead of process development, targeting products that will benefit lifestyle and improve quality of life. Nonetheless, the aspects that are covered in this work are up to day the state of the art in this constant change and will undeniably have important repercussions in the future of this area.

Keywords: bioseparations, primary recovery, purification, microscale devices, green bioprocesses.



La industria biotecnológica cambia todos los días para mejorar la pureza, el rendimiento y la recuperación de productos; además de hacerse más eficiente optimizando el uso de recursos. En este sentido, esta corta revisión busca presentar un panorama general de las tendencias en bioseparaciones que deben ocurrir en el área de bioprocesos para seguir alcanzando estos retos. Se ha identificado que las etapas del tren de bioseparaciones que serán impactadas son: las fuentes de materia prima, las etapas de recuperación primaria y la de purificación. Los nuevos enfoques que serán utilizados incluyen la integración y automatización de procesos, el microescalamiento y prácticas amigables con el medio ambiente. Los procesos biotecnológicos seguirán evolucionando para convertirse en la punta de lanza del desarrollo de nuevos productos que mejorarán el estilo y la calidad de vida. No obstante, los aspectos que se cubren en este trabajo son hasta ahora el estado del arte de este cambio que sin duda alguna tendrán una repercusión importante en el futuro cercano del área.

Palabras clave: bioseparaciones, recuperación primaria, purificación, micro dispositivos, procesos verdes.





The authors wish to thank the Bioprocess Research grant chair at Instituto Tecnológico y de Estudios Superiores de Monterrey (CAT-161) for its support.



Ahmad, M.M. and Przybycien, T.M. (2013) Towards optimal aqueous two-phase extraction system flowsheets for protein purification. Journal of Chemical Technology and Biotechnology 88, 62-71.         [ Links ]

Al-Hamouz, O.C.S. and Ali, S.A. (2013). Aqueous two-phase systems of pH-responsive poly[sodium (dialkyl amino)methylphosphonatealt-sulfur dioxide] cycle polymer with poly(oxyethylene). Journal of Chemical and Engineering Data 58, 1407-1416.         [ Links ]

Andersson, E. and Hahn-Hägerdal, B. (1990). Bioconversions in aqueous two-phase systems. Enzyme and Microbial Technology 12, 242-254.         [ Links ]

Asenjo, J.A. and Andrews, B.A. (2008). Challenges and trends in bioseparations. Journal of Chemical Technology and Biotechnology 83, 117-120.         [ Links ]

Barrett, T. A., Wu, A., Zhang, H., Levy, M. S., and Lye, G. J. (2010). Microwell engineering characterization for mammalian cell culture process development. Biotechnology and Bioengineering 105, 260-275.         [ Links ]

Cahú, T.B., Santos, S.D., Mendes, A., Córdula, C.R., Chavante, S.F., Carvalho Jr, L.B., Nader, H.B. and Bezerra, R.S. (2012). Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry 47, 570-577.         [ Links ]

Cisneros-Ruiz, M. and Rito-Palomares, M. (2005). Bioengineering strategies for the primary recovery of biological products. Revista Mexicana de Ingeniería Química 4, 131-139.         [ Links ]

Dismer, F., Oelmeier, S.A. and Hubbuch, J. (2013). Molecular dynamics simulations of aqueous two-phase systems: Understanding phase formation and protein partitioning. Chemical Engineering Science 96, 142-151.         [ Links ]

Eckert, C.A., Bush, D., Brown, J.S. and Liotta, C.L. (2000). Tuning solvents for sustainable technology. Industrial Engineering and Chemical Research 39, 4615-4621.         [ Links ]

Galanakis, C.M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology 26, 68-87.         [ Links ]

Gavrilescu, M. and Chisti, Y. (2005). Biotechnology -a sustainable alternative for chemical industry. Biotechnology Advances 23, 471-499.         [ Links ]

Gilar, M., Yu, Y. Q., Ahn, J., Fournier, J., and Gebler, J. C. (2008). Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides. Journal of Chromatography A 1191, 162-170.         [ Links ]

González-González, M. and Rito-Palomares, M. (2013). Aqueous two-phase systems strategies to establish novel bioprocesses for stem cells recovery. Critical Reviews in Biotechnology, 1-10.         [ Links ]

González-González, M., Vázquez-Villegas, P., García-Salinas, C. and Rito-Palomares, M. (2012). Current strategies and challenges for the purification of stem cells. Journal of Chemical Technology & Biotechnology 87, 2-10.         [ Links ]

Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44, 3358-3393.         [ Links ]

Liu, H.Z., Liang, X.F., Yang, L.R. and Chen, J.Y. (2010). Challenges and innovations in green process intensification. Science China Chemistry 53, 1470-1475.         [ Links ]

Mayolo-Deloisa, K., Trejo-Hernandez, M.R. and Rito-Palomares, M. (2009). Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochemistry 44, 435-439.         [ Links ]

Mayolo-Deloisa, K. Martínez, L.M. and Rito-Palomares, M. (2012). Chromatographic techniques and their application to studies of conformational changes, stability and refolding of proteins. Revista Mexicana de Ingeniería Química 11, 415-429.         [ Links ]

Murthy, P.S. and Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition-A review. Resources, Conservation and Recycling 66, 45-58.         [ Links ]

Nam, K.H., Chang, W.J., Hong, H., Lim, S.M., Kim, D.I. and Koo, Y.M. (2005). Continuous-Flow Fractionation of Animal Cells in Microfluidic Device Using Aqueous Two-Phase Extraction. Biomedical Microdevices 7, 189-195.         [ Links ]

Núñez, O., Gallart-Ayala, H., Martins, C.P.B. and Lucci, P. (2012). New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatography A 1228, 298-323.         [ Links ]

Orr, V., Zhong, L., Moo-Young, M. and Chou, C.P. (2013). Recent advances in bioprocessing application of membrane chromatography. Biotechnology Advances 31, 450-465.         [ Links ]

Phillips, T., Chase, M., Wagner, S., Renzi, C., Powell, M., DeAngelo, J. and Michels, P. (2013). Use of in situ solid-phase adsorption in microbial natural product fermentation development. Journal of Industrial Microbiology and Biotechnology 40, 411-415.         [ Links ]

Philp, J.C., Ritchie, R.J. and Allan, J.E.M. (2013). Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends in Biotechnology 4, 219-222.         [ Links ]

Saufi, S.M. and Fee, C.J. (2011). Recovery of lactoferrin from whey using cross-flow cation exchange mixed matrix membrane chromatography. Separation and Purification Technology 77, 68-75.         [ Links ]

Saufi, S.M. and Fee, C.J. (2013). Mixed matrix membrane chromatography based on hydrophobic interaction for whey protein fractionation. Journal of Membrane Science 444, 157-163.         [ Links ]

Singh, N., Pizzelli, K., Romero, J.K., Chrostowski, J., Evangelist, G., Hamzik, J., Soice, N. and Cheng, K.S. (2013). Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Biotechnology and Bioengineering 110, 1964-1972.         [ Links ]

Soohoo, J. and Walker, G. (2009). Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomedical Microdevices 11, 323-329.         [ Links ]

Sósol-Fernández, R.E., Marín-Lizárraga, V.M., Rosales-Cruzaley, E. and Lapizco-Encinas, B.H. (2012). Cell assessment in microfluidic devices. Revista Mexicana de Ingeniería Química 11, 227-248.         [ Links ]

Strege, M. A., Stevenson, S., and Lawrence, S. M. (2000). Mixed-mode anioncation exchange/hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery. Analytical Chemistry 72, 4629-4633.         [ Links ]

Trejo-Hernandez, M.R., Lopez-Munguia, A. and Quintero Ramirez, R. (2001). Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochemistry 36, 635-639.         [ Links ]

Tsukamoto, M., Taira, S., Yamamura, S., Morita, Y., Nagatani, N., Takamura, Y. and Tamiya, E. (2009). Cell separation by an aqueous twophase system in a microfluidic device. Analyst 134, 1994-1998.         [ Links ]

Wang, X.B., Yang, J., Huang, Y., Vykoukal, J., Becker, F.F. and Gascoyne, P.R.C. (2000). Cell Separation by Dielectrophoretic Field-flowfractionation. Analytical Chemistry 72, 832-839.         [ Links ]

Zhang, K., Dai, L., and Chetwyn, N. P. (2010). Simultaneous determination of positive and negative pharmaceutical counterions using mixed-mode chromatography coupled with charged aerosol detector. Journal of Chromatography A 1217, 5776-5784.         [ Links ]



† The authors contributed equally to this work.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons