Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.12 no.3 Ciudad de México dic. 2013
Ingeniería de alimentos
Morphometric characterization of chalkiness in mexican rice varieties by digital image analysis and multivariate discrimination
Caracterización morfométrica de la mancha opaca blanca (mob) en variedades mexicanas de arroz mediante análisis digital de imágenes y discriminación multivariada
G.A. Camelo-Méndez, P.E. Vanegas-Espinoza, A.R. Jiménez-Aparicio, L.A. Bello-Pérez and A.A. Del Villar-Martínez*
Instituto Politécnico Nacional, CEPROBI, Apartado postal 24 C.P., 62731, Yautepec, Morelos, México. * Corresponding author. E-mail: adelvilarm@ipn.mx.
Received August 3, 2012
Accepted February 8, 2013
Abstract
The opaque spot in the rice endosperm is called chalkiness; this characteristic has been recognized as agrain quality parameter for milling, and it is related to water retention. There is little scientific information about image analysis application (IAA) to characterize chalkiness development as pattern of the rice grain quality. In this work, chalkiness in the transversal section of polished grain of five rice varieties, using different parameters (form factor, fractal dimension concepts, angular second moment, lacunarity, entropy and color) was identified. The multivariate analysis indicated that the studied varieties presented morphometric characteristics that enabled it to be classified with 99.24% of accuracy. The resultt allowed the grouping by dendrogram analysis in two groups: 1) MorA-92, MorA-98, MorA-06, and 2) MF and MC, distinguishing between varieties, and demonstrating similar morpho-colorimetric chalkiness characteristic patterns between the analyzed rice varieties.
Keywords: Mexican rice cultivars, chalkiness, image analysis application, morpho-colorimetric features, multivariate analysis.
Resumen
La formación opaca en el endospermo del arroz es llamada mancha opaca blanca (MOB) o panza blanca; esta característica ha sido reconocida como parámetro de calidad del grano para procesos de molienda y retención de agua. Existe poca información científica sobre la aplicación del análisis de imágenes (IAA) para caracterizar la formación de la MOB, como patrón de calidad del grano de arroz. En este trabajo se analizó la formación de la MOB en el corte transversal del grano pulido de cinco variedades de arroz con diferentes parámetros (factor de forma, conceptos de dimensión fractal, segundo momento angular, lagunaridad, entropía y color). El análisis multivariado indicó que las variedades estudiadas presentaron características morfométricas que les permitieron ser clasificadas con 99.24% de exactitud. Los resultados fueron agrupados mediante un dendrograma que generó dos grupos: 1) MorA-92, MorA-98, MorA-06, y 2) MF y MC esto permitió distinguir entre las variedades que mostraron similares patrones morfo-colorimétricos característicos de la MOB entre las variedades de arroz estudiadas.
Palabras clave: variedades mexicanas de arroz, mancha opaca blanca, análisis de imagenes, características morfo-colorimétricas, análisis multivariado.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors thank the National Council of Science and Technology-Mexico for financial support in the project CONACYT-105704 and National Institute of Agricultural and Forestry Research (INIFAP) for cultivars provided. One of the authors (GACM) also acknowledges the scholarship from CONACYT-Mexico.
References
Camacho-Díaz, B.H., Jiménez-Aparicio, A., Chanona-Pérez, J.J., Calderón-Domínguez, G., Alamilla-Beltrán, L., Hernández-Sánchez, H., Gutiérrez-López, G.F. (2010). Morphological characterization of the growing front of Rhizopus oligosporus in solid media. Journal of Food Engineering 101, 309-317. [ Links ]
Camelo-Méndez, G.A., Camacho-Díaz, B.H., Del Villar-Martínez, A.A., Arenas-Ocampo, M.L., Bello-Pérez, L.A., Jiménez-Aparicio, A.R. (2012). Digital image analysis of diverse Mexican rice cultivars. Journal of the Science of Food and Agriculture 92, 2709-2714. [ Links ]
Candole, B.L., Siebenmorgen, T.J., Lee, F.N., Cartwright, R.D. (2000). Effect of rice blast and sheath blight on physical properties of selected rice cultivars. Cereal Chemistry 77, 535-540. [ Links ]
Chávez-Murillo, C.E., Wang, J.Y., Quintero-Gutiérrez, A.G., Bello-Perez, L.A. (2011). Physicochemical, textural and nutritional characterization of Mexican rice cultivars. Cereal Chemistry 88, 245-252. [ Links ]
Courtois, F., Faessel, M., Bonazzi, C. (2010). Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control 21, 567-572. [ Links ]
Du, C.J., Sun, D.W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology 15, 230-249. [ Links ]
Dubey, B., Bhagwat, S., Shouche, S., Sainis, S. (2006). Potential artificial networks using morfometrical of wheat grains. Biosystems Engeniering 95, 61-67. [ Links ]
Espinosa-Mendoza, R.E., Solorza-Feria, J., Arenas-Ocampo, M.L., Camacho-Díaz, B.H., Del Villar-Martínez, A.A., Vanegas-Espinoza, P.E., Jimenez-Aparicio, A.R. (2012). Morphostructural characterization of rice grain (Oryza sativa L.) Variety Morelos A-98 during Filling Stages. The Scientific World Journal. DOI:10.1100/2012/940293. [ Links ]
Hernández, A.L., Tavitas, F.L. (2005). Plan Nacional de Investigación y Apoyos a la Transferencia de Tecnología: Cadena Agroalimentaria Arroz (in Spanish). INIFAP, Centro de Investigacioín Regional del Centro Campo Experimental "Zacatepec". Zacatepec, Morelos, México, No. 42. [ Links ]
Hintze J.L. (2007). NCSS Help System. Kaysville, Utah. [ Links ]
Jia, Z.K, Gao, R.S., Zhang, S.W. (1992). Meteorological basis of rice chalkiness formation. Chinese Journal of Applied Ecology 3, 321-326. [ Links ]
Jinorose, M., Prachayawarakorn, S., Soponronnarit, S. (2010). Development of a computer vision system and novel evaluation criteria to characterize color and appearance of rice. Drying Technology 28, 1118-1124. [ Links ]
Kim, S.S., Lee, S.E., Kim, O.W., Kim, D.C. (2000). Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chemistry 77, 376-379. [ Links ]
Medina, W., Skurtys, O., Aguilera, J.M. (2010). Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT- Food Science and Technology 43, 238-246. [ Links ]
Meraz-Torres, L.S., Quintanilla-Carvajal, M.X., Hernández-Sánchez, H., Téllez-Medina, D.I., Alamilla-Beltrán, L., Gutiérrez-López, G.F. (2011). Evaluación de la cinética del ángulo de contacto durante la humectación de aglomerados de maltodextrina. Revista Mexicana de Ingeniería Química 10, 273-279. [ Links ]
Ohtsubo, K., Nakamura, S. (2007). Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products. Journal of Agricultural and Food Chemistry 55, 1501-1509. [ Links ]
Patindol, J., Wang, Y. (2003). Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. Journal Agricultural and Food Chemistry 51, 2777-2784. [ Links ]
Quintanilla-Carvajal, M.X., Meraz-Torres, L.S., Alamilla-Beltrán, L., Chanona-Pérez, J.J., Terres-Rojas, E., Hern´ndez-Sánchez, H., Jiménez-Aparicio, A.R., Gutiérrez-López, G.F. (2011). Morphometric characterization of spray-dried microcapsules before and after a-tocopherol extraction. Revista Mexicana de Ingeniería Química 10, 301-312. [ Links ]
Sakai, N., Yonekawa, S., Matsuzaki, A. (1996). Two-dimensional image analysis of the shape of rice and its application to separating varieties. Journal of Food Engineering 27, 397-407. [ Links ]
Seo, S.W., Chamura, S. (1979). Studies on the characters of the improved semi-dwarf, high-yielding indica rice varieties: II. Shape and quality of rice kernel. Japanese Journal of Crop Science 48, 418-424. [ Links ]
Shen, Y., Jin, L., Xiao, P., Lu, Y., Bao, J.S. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science 49, 106-111. [ Links ]
Shimizu, N., Haque, M., Andersson, M., Kimura, T. (2008). Measurement and Assuring of rice kernels during quasi-moisture sorption by image analysis. Journal of Cereal Science 48, 98-103. [ Links ]
Tapia-Ochoategui, A.P., Camacho-Díaz, B. H., Perea-Flores, M.J., Ordoñez-Ruíz, I.M., Gutiérrez-López, G.F., Dávila-Ortiz, G. (2011). Cambios morfométricos durante el beneficio tradicional de las vainas de vainilla (Vanilla planifolia; orchidaceae) en México. Revista Mexicana de Ingeniería Química 10, 105-115. [ Links ]
van Dalen, G. (2004). Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food Research International 37, 51-58. [ Links ]
Webb, B.D. (1991). Rice quality and grades. In Rice Utilization; Luh, B. S., Ed.; Van Nostrand Reihold: New York, 89-119. [ Links ]
Wiesnerová, D., Wiesner L. (2008). Computerimage analysis of seed shape and seed color for flax cultivar description. Computers and Electronics in Agriculture 61, 126-135. [ Links ]
Yadav, B.K., Jindal, V.K. (2001). Monitoring milling quality of rice by image analysis. Computers and Electronics in Agriculture 33, 19-33. [ Links ]
Yadav, B.K., Jindal, V.K. (2007). Modeling changes in milled rice (Oryza sativa L.) kernel dimensions during soaking by image analysis. Journal of Food Engineering 80, 359-369. [ Links ]
Yokota, T., Tutumi, M., Takahashi, K. (1999). Growth rate estimation of in vitro primarily induced carrot callus by a fractal based model. Biochemical Engineering Journal 3, 231-234. [ Links ]
Zheng, C.X., Sun, D.W.,Zheng, L. (2006). Recent developments and applications of image features for food quality evaluation and inspection - a review. Trends in Food Science and Technology 17, 642-655. [ Links ]