Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.9 no.3 Ciudad de México dic. 2010
Energías renovables
Evaluación estadística de correlaciones de fracción volumétrica de vapor para la modelación numérica de flujo bifásico en pozos geotérmicos
Statistical evaluation of void fraction correlations for the numerical modeling of twophase flow in geothermal wells
A. Álvarez del Castillo1, E. Santoyo2*, O. GarcíaValladares2 y P. SánchezUpton1
1 Centro de Investigación en Energía (UNAM), Posgrado en Ingeniería (EnergíaGeotermia), Privada Xochicalco s/n, Centro, Temixco, Mor., 62580, México
2 Centro de Investigación en Energía (UNAM), Sistemas Energéticos, Privada Xochicalco s/n, Centro, Temixco, Mor., 62580, Mexico. *Autor para la correspondencia. Email: esg@cie.unam.mx
Recibido 3 de Julio 2009.
Aceptado 5 de Marzo 2010.
Resumen
La predicción de los perfiles de presión y temperatura en pozos geotérmicos bifásicos es una tarea fundamental para estudiar sus mecanismos de producción de flujo. La fracción volumétrica de vapor es uno de los parámetros más importantes requeridos para la predicción realista de los perfiles de producción. En este trabajo se evaluaron ocho correlaciones empíricas (Bonnecaze, modelo de Dix, DunsRos, Krilov, Hasan, Rouhani, modelo Homogeneo y Orkiszewski) para estimar la fracción volumétrica de vapor y modelar sus implicaciones en el flujo bifásico de pozos geotérmicos productores. Estas correlaciones fueron evaluadas mediante la modelación del flujo bifásico usando los simuladores GEOPOZO y GEOWELLS en 4 pozos productores de campos geotérmicos de México: Los Azufres, Mich. (Az18), Los Humeros, Pue. (H1) y (Corro Prieto, B.C. (M90 y M201). Los perfiles de presión y temperatura obtenidos por simulación fueron estadísticamente comparados con datos medidos en los pozos. Se encontró sistemáticamente que los perfiles simulados con la correlación del modelo de Dix provee las aproximaciones más aceptables (< 10%) al compararse con los datos medidos en los pozos evaluados, sugiriendo su uso para simular el flujo bifásico en pozos geotérmicos, ante la ausencia de correlaciones más confiables para estimar la fracción volumétrica de vapor.
Palabras clave: fracción volumétrica de gas, fracción volumétrica de líquido, flujo vaporlíquido, flujo verticalinclinado, perfiles de producción, energía geotérmica.
Abstract
Predicting flowing pressure and temperature profiles in geothermal wells is a fundamental task to study the in flow production mechanisms. The gas void fraction is one of the most important parameters required for the better prediction of production profiles. Eight empirical correlations (Bonnecaze, Dix model, DunsRos, Krilov, Hasan, Rouhani, Homogeneous Model and Orkiszewski) for the estimation of gas void fractions and to model their implications on the twophase flow inside geothermal wells were evaluated. These correlations were assessed through the twophase flow modeling (using the wellbore simulators GEOPOZO and GEOWELLS) in four producer wells from Mexican geothermal fields: Los Azufres, Mich. (Az18), Los Humeros, Pue. (H1), and Cerro Prieto, B.C. (M90 and M201). The simulated pressure and temperature profiles were statistically compared with actual field data. A n acceptable agreement (< 10%) between the simulated profiles, obtained wit h the Dix model correlation, and measured data was obtained. These results enabled the modeling of twophase flow inside geothermal wells to be reliably performed, which constitute an advantage due to the limited number of available correlations to calcula te the gas void fraction in geothermal wells.
Keywords: gas void fraction, liquid holdup, steamliquid flow, verticalinclined flow, production profiles, geothermal energy.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
Alkan, H. y Satman, A. (1990). A new lumped parameter model for geothermal reservoirs in the presence of carbon dioxide. Geothermics 19, 469479. [ Links ]
Ambastha, A.K. y Gudmundsson, J.S. (1986). Pressure profiles in twophase geothermal wells: comparison of field data and model calculations. SGPTR93, June 2123, [ Links ]
Stanford, California, USA: 11th Workshop on Geothermal Reservoir Engineering. [ Links ]
Aragón, A., García, A., Baca, A. y González, E. (1999). Comparison of measured and simulated pressure and temperature profiles in geothermal wells. Geofísica Internacional 38, 3542. [ Links ]
Barelli, A., Corsi, R., Del Pizzo, G. y Scali, C. (1982). A twophase flow model for geothermal wells in the presence of noncondensable gas. Geothermics 11, 175191. [ Links ]
Barnett, V. y Lewis, T. (1994). Outliers in statistical data. John Wiley & Sons, Chichester, UK. [ Links ]
Barragán, R.M., Nieva, D., Santoyo, E., González, E., Verma, M. y LópezMendiola, J.M. (1991). Geoquímica de fluidos del campo geotérmico de Los Humeros, Puebla (México). Geotermia, Revista Mexicana de Geoenergía 7, 2348. [ Links ]
Battistelli, A., Calore, C. y Pruess, K. (1997). The simulator TOUGH2/EWASG for modeling geothermal reservoirs with brines and noncondensible gas. Geothermics 26, 437464. [ Links ]
Bonnecaze, R.H., Erskine, W. y Greskovich, E.J. (1971). Holdup and pressure drop for two phase slug flow in inclined pipes. Journal ofAmerican Institute of Chemical Engineers 17, 11091113. [ Links ]
Castañeda, M., Abril, A., Arellano, V. y McCoy, R.L. (1981). Well log analysis applied to Cerro Prieto geothermal field. SGPTR55, December 1618. Stanford, California, USA: 7th Workshop Geothermal Reservoir Engineering. [ Links ]
Chadha, P.K., Malin, M.R. y PalacioPóerez, A. (1993). Modelling of twophase flow inside geothermal wells. Applied Mathematical Modelling 17, 236245. [ Links ]
Dalkilic, A.S., Laohalertdecha, S. y Wongwises, S. (2009). Effect of void fraction models on the twophase friction factor of R134a during condensation in vertical downward flow in a smooth tube. International Communications in Heat and Mass Transfer 35, 921927. [ Links ]
Dix, G.E. (1971). Vapor void fractions for forced convection with subcooled boiling at low flow rate. Tesis de Doctorado, University of California, USA. [ Links ]
Duns, H. y Ros, N.C.J. (1963). Vertical flow of gas and liquid mixtures in wells. Paper 10132, June 1926. Frankfurt, Germany: 6th World Petroleum Congress. [ Links ]
EspinosaParedes, G. y Soria, A. (1998). Method of finite difference solutions to the transient bubbly airwater flows. International Journal for Numerical Methods in Fluids 26, 11551180. [ Links ]
EspinosaParedes, G., CazarezCandia, O., GarcíaGutiérrez, A. y MartínezMéndez, J. (2002). Void fraction propagation in a bubbly twophase flow with expansion effects. Annals of Nuclear Energy 29, 12611298. [ Links ]
EspinosaParedes, G. y GarcíaGutiérrez, A. (2004). Thermal behaviour of geothermal wells using mud and airwater mixtures as drilling fluids. Energy Conversion and Management 45, 15131527. [ Links ]
EspinosaParedes, G., CazarezCandia, O. y Vazquez, A. (2004). Theoretical derivation of the interaction effects with expansion effects to bubbly twophase flows. Annals ofNuclear Energy 31, 117133. [ Links ]
EspinosaParedes, G., SalazarMendoza, R. y CazarezCandia, O. (2007). Averaging model for cuttings transport in horizontal wellbores. Journal ofPetroleum Science and Engineering 55, 301316. [ Links ]
García, A., Ascencio, F., Espinosa, G., Santoyo, E., Gutiérrez, H. y Arellano, V. (1999). Numerical modeling of hightemperature deep wells in the Cerro Prieto geothermal field, Mexico. Geofísica Internacional 38, 251260. [ Links ]
GarcíaGutiérrez, A., EspinosaParedes, G. y HernándezRamírez, I. (2002a). Study on the flow production characteristics of deep geothermal wells. Geothermics 31, 141167. [ Links ]
García, A., EspinosaParedes, G. y Barragán, R.M. (2002b). Effect of noncondensable gases on the flow of water and steam in geothermal wells. Geofísica Internacional 41, 377383. [ Links ]
GarcíaValladares, O., SánchezUpton, P. y Santoyo, E. (2006). Numerical modeling of flow processes inside geothermal wells: An approach for predicting production characteristics with uncertainties. Energy Conversion and Management 47, 16211643. [ Links ]
Garg, S.K., Pritchett, J.W. y Alexander, J.H. (2004). A new liquid holdup correlation for geothermal wells. Geothermics 33, 795817. [ Links ]
Gokcen, G. y Yildirim, N. (2008). Effect of noncondensable gases on geothermal power plant performance. Case study: Kizildere Geothermal Power PlantTurkey. International Journal of Exergy 5, 684695. [ Links ]
Gunn, C.I.M., Freeston, D.H. y Hadgu, T. (1992). Principles for wellbore simulator validation and calibration using matching analysis I. Analytical techniques. Geothermics 21, 341361. [ Links ]
Hasan, A.R. y Kabir, C.S. (1992). Twophase flow in vertical and inclined annuli. International Journal of Multiphase Flow 18, 279293. [ Links ]
Hasan, A.R., Kabir, C.S. y Sayarpour, M. (2007). A basic approach to wellbore twophase flow modeling. Paper 109868MS, November 1114. Anaheim, California, USA: Society of Petroleum Engineers Annual Technical Conference and Exhibition. [ Links ]
Herzig, C.T. (1990). Geochemistry of igneous rocks from the Cerro Prieto geothermal field, northern Baja California, Mexico. Journal of Volcanology and Geothermal Research 42, 261271. [ Links ]
Horner, D.R. (1951). Pressure buildup in wells. Paper 4135, May 28 June 6. The Hague, The Netherlands: 3rd World Petroleum Congress. [ Links ]
Hughmark, G.A. (1962). Holdup in gasliquid flow. Chemical Engineering Progress 53, 6265. [ Links ]
Hurtig, E., Grosswig, S. y Kiihn, K. (1997). Distributed fibreoptic temperature sensing: a new tool for long term temperature monitoring in boreholes. Energy Sources 19, 5562. [ Links ]
Jung, D.B., Wai, K.W. y Howard, W.T. (2001). Geothermal flow metering errors. Geothermal Resources Council Transactions 25, 2325. [ Links ]
Kelessidis, V.C., Karydakis, G.I. y Andritsos, N. (2007). Method for selecting casing diameters in wells producing lowenthalpy geothermal waters containing dissolved carbon dioxide. Geothermics 36, 243264. [ Links ]
Lu, X., Watson, A., Gorin, A.V. y Deans, J. (2006). Experimental investigation and numerical modelling of transient twophase flow in a geysering geothermal well. Geothermics 3, 409427. [ Links ]
Nieva, D., Verma, M., Santoyo, E., Barragán, R.M., Portugal, E., Ortiz, J. y Quijano, L. (1987). Chemical and isotopic evidence of steam upflow and partial condensation in Los Azufres reservoir. SGPTR109, January 2022. Stanford, California, USA: 12th Workshop on Geothermal Resources Engineering. [ Links ]
NIST/ASME Steam v2.2, (1996). Formulation for General and Scientific Use. NIST Standard References Database Number 10. [ Links ]
Orkiszewski, J. (1967). Predicting twophase pressure drop in vertical pipes. Journal of Petroleum Technology 19, 829838. [ Links ]
OrtizR, J. (1983). TwoPhase Flow in Geothermal Wells: Development and Uses of a Computer Code. Internal Report SGPTR66. June. Stanford Geothermal Program, Stanford University, California, USA. [ Links ]
Rice, C.K. (1987). The effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictions. ASHRAE Transactions 93, 341367. [ Links ]
Rouhani, S.Z. y Axelsson, E. (1970). Calculation of void volume fraction in the sub cooled and quality boiling regions. International Journal ofHeat and Mass Transfer 13, 383393. [ Links ]
Rybach, L. (2003). Geothermal energy: sustainability and the environment. Geothermics 32, 463470. [ Links ]
Santoyo, E., Verma, S.P., Nieva, D. y Portugal, E. (1991). Variability in the gas phase composition of fluids discharged from Los Azufres Geothermal Caldera (Móexico). Journal of Volcanology and Geothermal Research 47, 161181. [ Links ]
Satman, A. y Ugûr, Z. (2002). Flashing point compressibility of geothermal fluids with low CO2 content and its use in estimating reservoir volume. Geothermics 31, 2944. [ Links ]
Suárez, M.C., Tello, M.R. y Samaniego, F. (2000). Geochemical evolution of the Los Azufres, Mexico, geothermal reservoir. Part II: Noncondensable gases. Paper R0375, May 28 June 10, Japan: World Geothermal Congress 2000. [ Links ]
Szilas, A. P. y Patsch, F. (1975). Flow in geothermal hot water wells. Geothermics 4, 7988. [ Links ]
Tian, S. y Finger, J.T. (2000). Advanced geothermal wellbore hydraulics model. Journal of Energy Resources Technology 122, 142146. [ Links ]
TorresAlvarado, I.S., Pandarinath, K., Verma, S.P., y Dulski, P. (2007). Mineralogical and geochemical effects due to hydrothermal alteration in the Los Azufres geothermal field, Mexico. Revista Mexicana de Ciencias Geológicas 24, 1524. [ Links ]
Verma, S.P. (2005). Estadística básica para el manejo de datos experimentales: Aplicación en la geoquímica (Geoquimiometría). (UNAM), México. [ Links ]
Verma, M.P. (2009). Steam Tables: An approach of multiple variable sets. Computers & Geosciences 35, 21452150. [ Links ]
Verma, S.P. (2009). Evaluation of polynomial regression models for the Student t and Fisher F critical values, the best interpolation equations from double and triple natural logarithm transformation of degrees of freedom up to 1000, and their applications to quality control in science and engineering. Revista Mexicana de Ciencias Geológicas 26, 7992. [ Links ]
Verma, S.P. y Andaverde, J. (1996). Temperature distribution from cooling of a magma chamber in Los Azufres geothermal field, Michoacón, Mexico. Geofísica Internacional 35, 105113. [ Links ]
Verma, S.P. y Andaverde, J. (2007). Coupling of thermal and chemical simulations in a 3D integrated magma chamberreservoir model: A new geothermal energy research frontier. En: Geothermal Energy Research Trends, pp. 149188, Nova Science Publishers, New York, USA. [ Links ]
Verma, S.P., Andaverde, J. y Santoyo, E. (2006a). Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory. Journal of Geochemical Exploration 89, 398404. [ Links ]
Verma, S.P., QuirozRuiz, A. y DíazGonzález, L. (2008). Critical values for 33 discordancy test variants for outliers in normal samples up to sizes 1000, and applications in quality control in Earth Sciences. Revista Mexicana de Ciencias Geológicas 25, 8296. [ Links ]
Verma, S.P., DíazGonzález, L., SánchezUpton, P. y Santoyo, E. (2006b). OYNYL: A new computer program for ordinary, York, and New York leastsquares linear regressions. WSEAS Transactions Environment Development 2, 9971002. [ Links ]
Wallis, G.B. (1969). Onedimensional twophase flow. Editorial McGrawHill, USA. [ Links ]
Woldesemayat, M.A. y Ghajar, A.J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow 33, 347370. [ Links ]