SciELO - Scientific Electronic Library Online

 
vol.9 número2Estado del arte en la manipulación de proteínas empleando dielectroforesisHidrogenación de naftaleno utilizando catalizadores NiMo/Al2O3-SiO2(x): Estudio cinético índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.9 no.2 Ciudad de México ago. 2010

 

Catálisis, cinética y reactores

 

Evaluación de compositos TiO2/clinoptilolita en la fotodegradación del tinte MV–2B en un reactor–concentrador solar CPC

 

Evaluation of TiO2/clinoptilolite composites in MV–2B dye photodegradation on CPC solar reactor

 

M.E. Trujillo–Camacho1, C. García–Gómez1, J.F. Hinojosa–Palafox1 y F.F. Castillón–Barraza2*

 

1 Depto. de Ing. Química y Metalurgia, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Col. Centro, Hermosillo, Sonora, 83000, México.

2 Depto. de Nanocatálisis, Centro de Nanociencia y Nanotecnología, UNAM. Km. 107 Carretera Tijuana–Ensenada, CP. 22800, Ensenada, B.C, México. * Autor para la correspondencia. E–mail: mariat@iq.uson.mx

 

Recibido 23 de Noviembre 2009.
Aceptado 3 de Mayo 2010.

 

Resumen

En este trabajo se reporta el desempeño de materiales de TiO2 y TiO2/clinoptilolita (en proporciones en peso de 1/99, 10/90, 99/1 y 90/10) sintetizados por la técnica de sol gel, en los procesos de adsorción y degradación fotocatalítica del tinte metil violeta 2B (MV–2B). Los materiales íueron depositados sobre sustratos de vidrio y colocados en reactores tubulares acoplados a concentradores solares tipo CPC con dos diíerentes razones de concentración geométrica. Los fotocatalizadores en polvo íueron caracterizados por difracción de rayos X, microscopía electrónica de transmisión (TEM) y método BET para la determinación del área superficial; los depósitos de los materiales se caracterizaron por perfilometría y microscopía electrónica de barrido (SEM). Los resultados mostraron que la incorporación de clinoptilolita mejora la calidad del depósito en los sustratos de vidrio al proporcionar mayor adherencia incrementando por arriba del 10%, la cantidad de tinte eliminado de la solución.

Palabras clave: concentradores CPC, fotocatálisis, TiO2/clinoptilolita, metil violeta 2B, radiación solar.

 

Abstract

In this work is reported the performance of TiO2 and TiO2/clinoptilolite composites (with weight proportions of 1/99, 10/90, 99/1 and 90/10) synthesized by the sol–gel technique, in the adsorption and photocatalytic degradation of MV 2B dye (MV–2B). The materials were supported on glass substrates and mounted on tubular reactors coupled to CPC solar concentrator with two different geometric concentration ratios. The photocatalyzer powders were characterized by X–ray diffraction, transmission electron microscopy (TEM) and the BET method for surface area determination; the material deposits were characterized by profilometry and scanning electronic microscopy (SEM). The results showed that the incorporation of clinoptololite improved the quality of the materials deposit on glass substrates by bringing a better adherence and also increased the efficiency of the degradation process by up 10%.

Keywords: CPC concentrators, photocathalysis, TiO2/clinoptilolite, methyl violet 2B, solar radiation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Amat A.M., Arques A., López F., Miranda M.A. (2005). Solar photo–catalysis to remove paper mill wastewater pollutants. Solar Energy 79, 393–401.         [ Links ]

Bandala R., Arancibia C., Orozco S., Estrada C. (2004). Solar photoreactors comparison based on oxalic acid photocatalytic degradation. Solar Energy 77, 503–512.         [ Links ]

Chu D., Yuan X., Qin G., Xu M., Zheng P., Jia Lu J., Zha L. (2008). Efficient carbon–doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. Journal of Nanoparticle Research 10, 357–363.         [ Links ]

Faghihian H. (2004). Removal of cyanide from liquid wastes by modified clinoptilolite.International Journal of Environment and Pollution 22, 732 – 739.         [ Links ]

Fukahori S., Ichiura H., Kitaoka T., Tanaka H. (2003). Photocatalytic Decomposition of Bisphenol A in Water Using Composite TiO2–Zeolite Sheets Prepared by a Papermaking Technique. Environmental Science and Technology 37 (5), 1048–1051.         [ Links ]

Gernjak W., Maldonado M., Malato S., Caceres J., Krutzler T., Glaser A., Bauer R. (2004). Pilot–plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo Fenton. Solar Energy 77, 567–572.         [ Links ]

Herrmann J. (1999). Heterogeneous photocatalysis: Fundamentals and applications to removal of varios types of aqueous pollutants. Catalysis Today 53, 115–129.         [ Links ]

Herrmann, J. (2005). Heterogeneous photocatalysis: state of the art and present applications. Topics in Catalysis 34, 49–65.         [ Links ]

Kositzi M., Poulios I., Malato S. Campos A. (2004). Solar photocatalytic treatment of synthetic municipal wastewater. Water Research 38, 1147–1154.         [ Links ]

Malato S., Blanco J., Maldonado M., Fernández P., Alarcón D., Collares M., Farinha J., Correia de Oliveira J. (2004). Engineering of solar photocatalytic collectors. Solar Energy 77, 513–524.         [ Links ]

Mahalakshmi M., Vishnu S., Banumathi A., Palanichamy M., Murugesan V. (2009). Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite–supported TiO2. Journal of Hazardous Materials 161, 336–343.         [ Links ]

Nikazar M., Gholivand K., Mahanpoor K. (2007). Using TiO2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23. Water Kinetics and Catalysis 48, 214–220.         [ Links ]

Rabl A. (1976). Solar concentrators with maximal concentration for cylindrical absorbers. Applied Optics 15 (7), 1871–1873.         [ Links ]

Rincón M.E., Trujillo–Camacho M.E., Miranda–Hernández M., Cuentas–Gallegos A.K., Orozco G. (2007). Raman and electrochemical impedance studies of sol–gel titanium oxide and single walled carbon nanotubes composite films. Journal of Nanoscience and Nanotechnology 7, 1596–1603        [ Links ]

Rincón M.E., Trujillo M.E., Avalos J., Casillas N. (2007). Photoelectrochemical processes at interfaces of nanostructured TiO2/carbon black composites studied by scanning photoelectrochemical microscopy. Journal of Solid State Electrochemistry 11, 1287–1294.         [ Links ]

Sichel C., Blanco J., Malato S., Fernandez P. (2007). Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. Journal of Photochemistry and Photobiology A: Chemistry 189, 239–246.         [ Links ]

Trujillo M.E., Leyva L., Hinojosa F., Yeomans H. (2007). Procesos de adsorción y degradación fotocatalítica de metil violeta utilizando Ti02/clinoptilolita. XXXI Semana Nacional de Energía Solar, Zacatecas, Zacatecas.         [ Links ]

Yu j. Zhao X., Zhao Q. (2000). Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films 379, 7–14.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons