Serviços Personalizados
Journal
Artigo
Indicadores
-
Citado por SciELO
-
Acessos
Links relacionados
-
Similares em SciELO
Compartilhar
Revista mexicana de ingeniería química
versão impressa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.8 no.1 Ciudad de México Abr. 2009
Termodinámica
Análisis de la producción de entropía en una máquina térmica operada con un sistema químico nolineal
Analysis of entropy production in a thermal engine powered by a nonlinear chemical system
J. VillanuevaMarroquín y D. Barragán*
Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia Cra 30 # 4503, Bogotá, Colombia. * Autor para la correspondencia. Email: dabarraganra@bt.unal.edu.co, dabarraganra@gmail.com Fax (+571) 3165220
Recibido 30 de Junio 2008
Aceptado 3 de Marzo 2009
Resumen
Con el propósito de minimizar la velocidad de producción de entropía disipación termodinámica durante un proceso químico, la segunda ley de la termodinámica se aplica al estudio de una máquina térmica sujeta a procesos isotérmicos de expansióncompresión. Se determina la magnitud del coeficiente global de transferencia de calor (W m2 K1) del pistón que minimiza la disipación termodinámica cuando éste es conducido por la reacción química AB, representada en régimen oscilatorio por el modelo termocinético de Sal'nikov.
Palabras clave: optimización basada en la segunda ley la termodinámica, velocidad de producción de entropía, disipación termodinámica, modelo de Sal'nikov, oscilador termocinético.
Abstract
Second law optimization is applied to study a thermal engine driven by a thermokinetic oscillator. The Sal'nikov model is used to modeling the net process AB, which for given values of the control parameters exhibits nonlinear behavior like oscillations in temperature and concentrations. Constant of global heat transfer in W m2 K1for the engine which minimizes the rate of entropy production during transformation is obtained after numerical evaluation.
Keywords: second law optimization, rate of entropy production, thermodynamic dissipation, Sal'nikov model, thermokinetic oscillator.
DESCARGAR ARTÍCULO EN FORMATO PDF
Agradecimientos
A la Universidad Nacional de Colombia por la financiación de los proyectos DIB803770, DIB803734 y DINAIN 20601002443. Agradecemos a Miguel A. MonteroPáez por el diseño de las figuras.
Referencias
Barragán, D., Robles, E. (2006). Termodinámica de los procesos irreversibles de un metabolismo. Revista de la Academia Colombiana de Ciencias 30, 419434. [ Links ]
Barragán, D., Eu, B. C. (2001). Irreversible thermodynamics of neural networks: calortropy production in logic operations. Journal of Physical Chemistry 105B, 71047114. [ Links ]
Bejan, A. (1996). Models of power plants that generate minimum entropy while operating at maximum power. American Journal of Physics 64, 10541059. [ Links ]
Bejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research 26, 545565. [ Links ]
Bejan, A. (2006). Advanced Engineering Thermodynamics. 3rd Ed., Wiley. [ Links ]
Delgado, E. J. (1994) Complex dynamics in a simple exothermic reaction model. Latin American Applied Research 24, 109115. [ Links ]
Delgado, E. J. (1996). A thermal engine driven by a thermokinetic oscillator. Journal of Physical Chemistry 100, 1114411147. [ Links ]
Denbigh, K. G. (1956). The secondlaw efficiency of chemical processes. Chemical Engineering Science 6, 19. [ Links ]
Eu, B. C. (1988). Entropy for irreversible processes. Chemical Physics Letters 143, 6570. [ Links ]
Eu, B. C. (1999). Generalized thermodynamics of global irreversible processes in a finite macroscopic system. Journal of Physical Chemistry 103B, 85838594. [ Links ]
Eu, B. C. (2002). Generalized Thermodynamics: Thermodynamics of Irreversible Processes and Generalized Hydrodynamics. Kluwer Academic Press, Dordrecht, Netherlands. [ Links ]
Gray, B. F., Roberts, M. J (1988a). Analysis of chemical kinetic systems over the entire parameter space I. The Sal'nikov thermokinetic oscillator. Proceedings of the Royal Society 416A, 391402. [ Links ]
Gray, B. F., Roberts, M. J. (1988b). An asymptotic analysis of the Sal'nikov thermokinetic oscillator. Proceedings of the Royal Society 416A, 425441. [ Links ]
Griffiths, J. F., Whitaker, B. J. (2002). Thermokinetic interactions leading to knock during homogeneous charge compression ignition. Combustion and Flame 131, 386399. [ Links ]
Hindmarsh, A. C. (1972). Livermore Solver for Ordinary Differential Equations. Technical Report No. UCID3001, Lawrence Laboratory, Livermore, CA. [ Links ]
KjelstrupRatkje, S., Ferland, K. S., Ferland, T. (1988). Irreversible thermodynamics: Theory and applications. John Wiley, Great Britain. [ Links ]
KejlstrupRatjke, S., De SwaanArons, J. (1995). Denbigh revisited: Reducing lost work in chemical processes. Chemical Engineering Science 50, 15511560. [ Links ]
Kjelstrup, S., Bedeaux, D., Johannessen, E. (2006). Elements of irreversible thermodynamics for engineers. 2nd Edition, Tapir Academic Press, Trondheim, Norway. [ Links ]
Ross, J., Irvin, B. R. (1988). Calculation of the rate of entropy production for a model chemical reaction. Journal of Chemical Physics 89, 10641068. [ Links ]
Ross, J., Vlad, M. O. (2005). Exact solutions for the entropy production rate of several irreversible processes. Journal of Physical Chemistry 109A, 1060710612. [ Links ]
Salamon, P., Hoffmann, K. H., Schubert, S., Berry, R. S., Andresen, B . (2001). What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production? Journal of NonEquilibrium Thermodynamics 26, 7383. [ Links ]
Salamon, P., Nulton, J. D., Siracusa, G., Limon, A., Bedeaux, D., Kjelstrup, S. (2002). A simple example of control to minimize entropy production. Journal of NonEquilibrium Thermodynamics 27, 4555. [ Links ]
Sato, N. (2004). Chemical energy and exergy: An introduction to chemicals thermodynamics for engineers. Elsevier Science, Amsterdam, Netherlands. [ Links ]