Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.7 no.3 Ciudad de México dic. 2008
Ingeniería de alimentos
Comparative study of the mechanical properties of edible films made from single and blended hydrophilic biopolymer matrices
Estudio comparativo de las propiedades mecánicas de películas comestibles elaboradas a partir de matrices poliméricas simples y combinadas
D. L. VillagómezZavala1,2, C. GómezCorona3, E. San Martín Martínez2, J.P. PérezOrozco4, E.J. VernonCarter5 and R. PedrozaIslas2,3*
1 Facultad de Estudios Superiores Cuautitlán. Universidad Nacional Autónoma de México. Cuautitlán de Romero Rubio, Edo.de México.
2 Centro de lnvestigación en Ciencia Aplicada y Tecnología Avanzada del lnstituto Politécnico Nacional. Calzada Legaria 694. Col. Irrigación, CP 11500, México, D.F.
3 Departamento de lngeniería y Ciencias Químicas, Universidad lberoamericana, Prolongación Paseo de la Reforma 880, CP 01210 México, D.F. * Corresponding author. Email: ruth.pedroza@uia.mx
4 Departamento de lngeniería Química y Bioquímica, lnstituto Tecnológico de Zacatepec, CP 62780 Zacatepec, Mor., México.
5 Departamento de lngeniería de Procesos e Hidraúlica, Universidad Autónoma Metropolitanalztapalapa, CP 09340, México, D.F., México
Received 10th of July 2008
Accepted 31st of October 2008
Abstract
Sodium alginate, κcarrageenan, mesquite gum and/or whey protein concentrate were used alone or blended for obtaining edible films, using sorbitol as plasticizer. Film mechanical properties were determined with a TAXT2 texture analyzer. Films with greater breaking factor, tensile strength, tensile strength at break, and tensile energy at break were obtained when sodium alginate was used alone. Low Young's modulus values were obtained with blends of sodium alginate and κcarrageenan (with the latter predominating in the blend) and mesquite gumwhey protein concentrate (with the former predominating in the blend). The latter blend exhibited highest elongation. Films containing pure sodium alginate or κcarrageenan or blended with the other gums (with sodium alginate predominating) could be classified as hard, strong and resistant. Films where mesquite gum or whey protein concentrates were on their or where their blend predominated over that of sodium alginate and/or κcarragenan were mostly soft and weak.
Keywords: hydrocolloids; edible films; mechanical properties; mesquite gum; sodium alginate; κcarrageenan; whey protein concentrate.
Resumen
Se utilizó alginato de sodio, κcarragenina, goma de mezquite y/o proteína concentrada de suero lácteo, solos o combinados para obtener películas comestibles, usando sorbitol como plastificante. Se determinaron las propiedades mecánicas de las películas por medio de un analizador de textura TATX2. Las películas con mayor factor de ruptura, esfuerzo tensil, esfuerzo tensil a la ruptura y energía tensil a la ruptura, fueron las elaboradas con solo alginato de sodio. Los menores valores del Módulo de Young, se obtuvieron con las mezclas de alginato de sodio y κcarragenina (cuando esta última predominó en la mezcla) y con las mezclas de goma de mezquite y proteína concentrada de suero lácteo (cuando el primero predominó en la mezcla). La película de esta última mezcla fue también la que exhibió mayor elongación (%). Las películas elaboradas sólo con alginato de sodio o sólo con κcarragenina o en mezcla con la otra goma (predominando el alginato de sodio), podrían clasificarse como duras, fuertes y resistentes. Las películas de goma de mezquite o de proteína concentrada de suero lácteo o las películas donde la mezcla de éstos predominaba sobre el contenido de alginato de sodio y/o κcarragenina, fueron en su mayoría suaves y débiles.
Palabras clave: hidrocoloides, películas comestibles; goma de mezquite, alginato de sodio, κcarragenina; proteína concentrada de suero lácteo.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
Authors thank M.Sc. Carmen Chaparro Mercado for her support in the statistical analysis and for the partial financial support provided by the Consejo Nacional de Ciencia y Tecnología de México (CONACyT) through grant U81157.
References
AguilarMendez, M. A., San MartinMartinez, E., Tomas, S. A., CruzOrea, A., JaimeFonseca, M. R., (2008) Gelatinestarch films: physicochemical properties and their application in extending the postharvest shelf life of avocado (Persea americana), Journal of the Science of Food and Agriculture 88, 185193. [ Links ]
Anker, M., Stading, M. and Hermansson, A. M. (1998). Mechanical properties, water vapour permeability, and moisture contents of plactoglobulin and whey protein films using multivariate analysis. Journal of Agricultural and Food Chemistry 46, 18201829. [ Links ]
Anker, M., Stading, M. and Hermansson, A.M. (2000). Relationship between the microstructure and the mechanical and barrier properties of whey protein films. Journal of Agricultural and Food Chemistry 48, 3806-3816. [ Links ]
ASTM (1997). In: Annual book of American standard testing methods, ASTM, Philadelphia, Pp. 165173. [ Links ]
Briston, J.H. (1990). Plastic films. Pp. 93112. Longman Scientific & Technical, England. [ Links ]
Bu, H., Kjeniksen, A.L., Knudsen, K.D. and Nyström, B. (2004). Rheological and structural properties of aqueous alginate during gelation via de Ugi multicomponent reaction. Biomacromolecules 5, 14701479. [ Links ]
De Kruif, C.G. and Tuinier, R. (2001). Polysaccharide protein interactions. Food Hydrocolloids 15, 555563. [ Links ]
Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17, 2539. [ Links ]
Fang, Y., Tung, M.A., Britt, I.J., Yada, S. and Dalgleish, D.G. (2002). Tensile and barrier properties of edible films made from whey proteins. Journal of Food Science 67,188-193. [ Links ]
Garti, N. and Reichman, D. (1993). Hydrocolloids as food emulsifiers and stabilizers. Food Structure 12, 411426. [ Links ]
Hare, L.B. (1974). Mixture designs applied to food formulation. Food Technology 28(3), 5062. [ Links ]
Kester, J.J. and Fennema, O. (1989). Edible films and coatings: A review. Journal of Food Science 40, 4759. [ Links ]
Krochta, J.M. and MulderJohnston, C. (1997). Edible and biodegradable polymer films: Challenges and opportunities. Food Technology 51(2), 6174. [ Links ]
LoezaCorte, J.M., VerdeCalvo, J.R., CruzSosa, F., VernonCarter, E.J. and HuertaOchoa. (2007). S. Larabinose production by hydrolysis of mesquite gum by a crude extract with aLarabinofuranosidase activity from Aspergillus niger. Revista Mexicana de Ingeniería Química 6, 259265. [ Links ]
McHugh, T.H. and Krochta, J.M. (1994). Sorbitolvsglycerolplasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry 42 (2), 841-845. [ Links ]
Morris, V.J. (1986). Multicomponent gels. In: Gums and stabilisers for the food industry 3 (G.O. Phillips, D.J. Wedlock and P.A. Williams, eds), Pp. 87100. Elsevier Applied Science Publishers, New York. [ Links ]
OrozcoVillafuerte, J., CruzSosa, F., PonceAlquicira, E. and VernonCarter, E.J. (2003). Mesquite gum: Fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture from wild trees. Carbohydrate Polymers 54, 327333. [ Links ]
Park, H.J., Rhee, C.O., Bae, D.H. and Hettiarachchy, N.S. (2001). Mechanical and watervapor permeability of soyprotein films affected by calcium salts and glucono8lactone. Journal of Agricultural and Food Chemistry 59, 2308-2312. [ Links ]
Parris, N., Coffin, D.R. (1997). Composition factors affecting the water vapour permeability and tensile properties of hydrophilic zein films. Journal of Agricultural and Food Chemistry 45, 15681599. [ Links ]
PérezGago, M.B., Nadaud, P. and Krochta, J.M. (1999). Water vapor permeability, solubility, and tensile properties of heat denatured versus native whey protein films. Journal of Food Science 64, 10341037. [ Links ]
RománGuerrero, A., OrozcoVillafuerte, J., PérezOrozco, J.P., CruzSosa, F., JiménezAlvarado, R. and VernonCarter, E.J. (2009). Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel oil. Food Hydrocolloids 23, 708713. [ Links ]
Sábato, S.F., Outtara, B., Yu, H., D'Apramo, G., Le Tien, C., Mateescu, M.A. and Lacroix, M. (2001). Mechanical and barrier properties of crosslinked soy and whey protein based films. Journal of Agricultural and Food Chemistry 49, 13971403. [ Links ]
Sánchez, V.E., Bartholomai, G.B. and Pilosof, A.M.R. (1995). Rheological properties of food gums as related to their water binding capacity and to soy protein interaction. Lebensmittel Wissencschaft und Technology 28, 380385. [ Links ]
Tolstoguzov, V. (1986). Functional properties of proteinpolysaccharides mixtures. In: Functional properties of food macromolecules, (J.R. Mitchell and D.A. Ledward, eds), Pp. 385415. Elsevier, London. [ Links ]
Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloids 17, 123. [ Links ]
Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends Food Technology, 14, 7178. [ Links ]
VernonCarter, E.J., Beristain, C.I. and PedrozaIslas, R. (2000). Mesquite gum (Prosopis gum). In: Novel macromolecules in food systems, (G. Doxastakis and V. Kiosseoglou, eds), Pp. 217238. Elsevier, Amsterdam. [ Links ]
Williams, P.A. and Phillips, G.O. (1995). Interactions in mixed polysaccharide systems. In: Food polysaccharides and their applications (A.M. Stephen, ed), Pp. 463500. Marcel Dekker, New York. [ Links ]