SciELO - Scientific Electronic Library Online

vol.19 issue1Pattern Recognition System Based on Data Mining for Analysis of Chemical Substances in BrainArabic Dialogue System for Hotel Reservation based on Natural Language Processing Techniques author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.1 Ciudad de México Jan./Mar. 2015 



An Approach for Prototype Generation based on Similarity Relations for Problems of Classification


Yumilka B. Fernández Hernández1, Rafael Bello2, Yaima Filiberto1, Mabel Frías1, Lenniet Coello Blanco1 and Yaile Caballero1


1 Departamento de Ciencias de la Computación, Universidad de Camagüey, Camagüey, Cuba.,,,,

2 Departamento de Ciencias de la Computación, Universidad Central de Las Villas, Cuba.

Corresponding author is Yumilka B. Fernández.


Article received on 02/10/2014.
Accepted on 20/01/2015.



In this paper, a new method for solving classification problems based on prototypes is proposed. When using similarity relations for granulation of a universe, similarity classes are generated, and a prototype is constructed for each similarity class. Experimental results show that the proposed method has higher classification accuracy and a satisfactory reduction coefficient compared to other well-known methods, proving to be statistically superior in terms of classification's precision.

Keywords: Prototype generation, similarity relations, classification.





1. García-Durán, R., Fernández, F., & Borrajo, D. (2012). A prototype-based method for classification with time constraints: a case study on automated planning. Pattern Analysis & Applications, Vol. 15. No. 3, pp. 261-277, doi: 10.1007/s10044-010-0194-6.         [ Links ]

2. Barandela, R., Cortés, N., & Palacios, A. (2001). The nearest neighbor rule and the reduction of the training sample size. Proceedings 9th Symposium on Pattern Recognition and Image Analysis. Castellon. Spain, Vol. 1, pp. 103-108.         [ Links ]

3. James, C., Bezdek, J., & Kuncheva, L. (2001). Nearest Prototype Classifier Designs: An Experimental Study. International Journal of Intelligent Systems, Vol. 16, pp.1445-1473, doi: 10.1002/int.1068.         [ Links ]

4. Kim, S.W. & Oommen, B.J. (2003). A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal Applications, Vol. 6, pp. 232-244.         [ Links ]

5. García, S., Cano, J.R., & Herrera, F., (2008). A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, Vol. 41. No. 8, pp. 2693-2709. doi: 10.1016/j.patcog.2008.02.006.         [ Links ]

6. Triguero, I., Derrac, J., García, S., & Herrera, F. (2012). A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification. IEEE Transactions on Systems. Man. and Cybernetics—Part C: Applications and Reviews, Vol. 42, No. 1, pp. 86-100.         [ Links ]

7. Wilson, D.R. & Martínez, T.R. (2000). Reduction tecniques for instance-based learning algorithms. Machine Learning, Vol. 38, pp. 257-268, doi: 10.1023/A:1007626913721.         [ Links ]

8. Liu, H. & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge Discovery, Vol. 6, pp. 115-130.         [ Links ]

9. Olvera, J.A., Carrasco, J.A., & Martínez, J.F. (2010). Prototype Selection Methods. Computación y Sistemas, Vol. 13, No. 4, pp. 449-462.         [ Links ]

10. Triguero, I., Derrac, J., García, S., & Herrera, F. (2012). Integrating a Differential Evolution Feature Weighting scheme into Prototype Generation. Neurocomputing, Vol. 97, pp. 332-343, doi: 10.1016/j.neucom.2012.06.009.         [ Links ]

11. Bello-García, M., García, M.M., & Bello, R. (2013). A Method for Building Prototypes in the Nearest Prototype Approach Based on Similarity Relations for Problems of Function Approximation. LNAI, Vol. 7629, Springer-Verlag, pp. 39-50.         [ Links ]

12. Martínez-Trinidad, J. Francisco, & Yao, Y.Y. (2000). Granular computing: basic issues and possible solutions. Proceedings of the 5th Joint Conference on Information Sciences, pp. 186-189.         [ Links ]

13. Filiberto, Y., Bello, R., Caballero, Y., & Larrua, R. (2010). A method to built similarity relations into extended Rough set theory. Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA2010), pp. 1314-1319.         [ Links ]

14. Duda, R.O. & Hart, P.E. (1973). Pattern Classification and Scene Analysis. John Wiley and Sons.         [ Links ]

15. Bermejo, S. & Cabestany, J. (2000). A Batch Learning Algorithm Vector Quantization Algorithm for Nearest Neighbour Classification. Neural Processing Letters, Vol. 11, pp. 173-184, doi: 10.1023/A:1009634824627.         [ Links ]

16. Patané, G. & Russo, M. (2001). The Enhanced LBG Algorithm. Neural Networks, Vol. 14, pp. 1219-1237, doi:10.1016/S0893-6080(01)00104-6.         [ Links ]

17. Kuncheva, L.I. & Bezdek, J.C. (1998). Nearest Prototype Classification: Clustering. Genetic Algorithms, or Random Search? IEEE Transactions on Systems. Man and Cybernetics, Vol. 28, No. 1, pp. 160-164, doi: 10.1109/5326.661099.         [ Links ]

18. Kuncheva, L.I. & Bezdek, J.C. (1998). An integrated framework for generalized Nearest prototype classifier design. International Journal of Uncertainty. Fuzziness and Knowledge Based Systems, Vol. 6, No. 5, pp. 437-457, doi: 10.1142/S0218488598000355.         [ Links ]

19. Fernández, F. & Isasi, P. (2004). Evolutionary Design of Nearest Prototype Classifiers. Journal of Heuristics, Vol. 10, pp. 431-454, doi: 10.1023/B:HEUR.0000034715.70386.5b.         [ Links ]

20. Kohonen, T. (1989). Self-Organization and Associative Memory. Springer.         [ Links ]

21. Fritzke, B. (1994). Growing Cell Structures—A Self-Organizing Network for Unsupervised and Supervised Learning. Neural Networks, Vol. 7, No. 9, pp. 1441-1460.         [ Links ]

22. Olvera-López, J. & Carrasco-Ochoa, J.A. (2010). A new fast prototype selection method based on clustering. Pattern Anal Applic., Vol. 13, pp. 31-141, doi: 10.1007/s10044-008-0142-x.         [ Links ]

23. López, R.L. & Armengol, E. (1998). Machine learning from examples: Inductive and Lazy methods. Data & Knowlege Engineering, Vol. 25, pp. 99-123, doi: 10.1016/S0169-023X(97)00053-0.         [ Links ]

24. Filiberto, Y. & Bello, R. (2010). Using PSO and RST to Predict the Resistant Capacity of Connections in Composite Structures. International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, pp. 359-370.         [ Links ]

25. Blake, C.L. & Merz, C.J. (1998). UCI repository of machine learning databases.         [ Links ]

26. Alcalá-Fdez, J., Sánchez, L., García, S. del Jesús. M.J., Ventura, S., Garrell, J., Otero, J., Romero, C. Bacardit, J., Rivas, V.M., Fernández, J.C., & Herrera, F. (2008). KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput., Vol. 13, No. 3, pp. 307-318.         [ Links ]

27. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Journal of Statistics, Vol. 6, pp. 65-70.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License