SciELO - Scientific Electronic Library Online

 
vol.11 issue2Integral System to Build and Exploit Geographical Information Systems via Internet author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.11 n.2 Ciudad de México Oct./Dec. 2007

 

Resumen de tesis doctoral

 

Restricted Conceptual Clustering Algorithms based on Seeds

 

Algoritmos Conceptuales Restringidos basados en Semillas

 

Graduated: Irene Olaya Ayaquica Martínez
National Institute of Astrophysics, Optics and Electronics
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.

Advisor: José Francisco Martínez Trinidad
National Institute of Astrophysics, Optics and Electronics
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.
e–mail:
fmartine@inaoep.mx

Advisor: Jesús Ariel Carrasco Ochoa
National Institute of Astrophysics, Optics and Electronics
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.
e–mail:
ariel@inaoep.mx

 

Graduated in July 19, 2007

 

Abstract

The non–supervised classification algorithms determine clusters such that objects in the same cluster are similar among them, while objects in different clusters are less similar. However, there are some practical problems where, besides determining the clusters, the properties that characterize them are required. This problem is known as conceptual clustering. There are different methods that allow to solve the conceptual clustering problem, one of them is the conceptual k– means algorithm, which is a conceptual version of the k–means algorithm; one of the most studied and used algorithms for solving the restricted non–supervised classification problem (when the number of clusters is specified a priori). The main characteristic of the conceptual k–means algorithm is that it requires generalization lattices for the construction of the concepts. In this thesis, an improvement of the conceptual k–means algorithm and a new conceptual k–means algorithm that does not depend on generalization lattices for building the concepts are proposed. Finally, in this thesis, two fuzzy conceptual clustering algorithms, which are fuzzy versions of the proposed hard conceptual clustering algorithms, are introduced.

Keywords: Conceptual Clustering, Fuzzy Conceptual Clustering, Similarity Functions, Mixed Data.

 

Resumen

El estudio de la clasificación no supervisada ha sido enfocado principalmente a desarrollar métodos que determinen agrupamientos tales que objetos en el mismo agrupamiento sean similares entre ellos, mientras que objetos de diferentes agrupamientos sean poco similares. Sin embargo, para algunos problemas prácticos se requiere, además de determinar los agrupamientos, conocer las propiedades que describan cómo son dichos agrupamientos. A este problema se le conoce como agrupamiento conceptual. Existen diversos algoritmos que permiten resolver el problema de agrupamiento conceptual, entre los que se encuentra el algoritmo k–means conceptual, el cual es una versión conceptual del algoritmo k–means; uno de los algoritmos más estudiados y utilizados para resolver el problema de clasificación no supervisada restringida (cuando se especifica a priori el número de agrupamientos). La principal característica del algoritmo k–means conceptual es que requiere retículos de generalización para la construcción de los conceptos. En esta tesis se proponen dos algoritmos k–means conceptuales, el primero de ellos es una mejora del algoritmo k–means conceptual y el segundo es un algoritmo k–means conceptual que no requiere retículos de generalización para la construcción de los conceptos. Finalmente, en esta tesis se proponen dos algoritmos conceptuales difusos, los cuales son versiones difusas de los algoritmos conceptuales duros propuestos.

Palabras Clave: Agrupamiento Conceptual, Agrupamiento Conceptual Difuso, Funciones de Similaridad, Datos Mezclados.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Alba–Cabrera E. (1997), Nuevas extensiones del concepto de testor para diferentes tipos de funciones de semejanza. Tesis para obtener el grado de Doctor en Ciencias Matemáticas, ICIMAF, Cuba.        [ Links ]

2. Ayaquica–Martínez I.O., Martínez–Trinidad J.F. (2001), Fuzzy c–means algorithm to analyze mixed data. VI Iber–american Symposium on Pattern Recognition. Florianopolis, Brazil, pp. 27–33.        [ Links ]

3. Béjar J., Cortés U. (1992), LINNEO+: Herramienta para la adquisición de conocimiento y generación de reglas de clasificación en dominios poco estructurados. En las memorias del 3 er. Congreso Iberoamericano de Inteligencia Artificial. La Habana Cuba, pp. 471–481.        [ Links ]

4. Blake C., Keogh E., Merz C.J. (1998), UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine CA: University of California, Department of Information and Computer Science.        [ Links ]

5. De–la–Vega–Doria L.A. (1994), Extensión al caso difuso del algoritmo de clasificación Kora–3. Tesis para obtener el grado de Maestro en Ciencias en especialidad en Ingeniería Eléctrica, CINVESTAV, México.        [ Links ]

6. Fisher D. (1990), Knowledge acquisition via incremental conceptual clustering. Shavlik and Dietterich editors. Readings in Machine Learning, pp. 267–283.        [ Links ]

7. García–Serrano J.R., Martínez–Trinidad J.F. (1999), Extension to c–means algorithm for the use of similarity functions. 3rd European Conference on Principles of Data Mining and Knowledge Discovery Proceedings. Prague, Czech. Republic, pp 354–359.        [ Links ]

8. Gennari J.H., Langley P., Fisher D. (1990), Model of incremental concept formation. In J. Cabonell. MIT/Elsevier Machine Learning, paradigms and methods, pp. 11–61.        [ Links ]

9. Guevara–Cruz M. E. (2004), Genetic Algorithm for feature selection and informational weight computation using the fuzzy FS testor concept. Tesis para obtener el grado de Maestro en Ciencias de la Computación, Facultad de Computación, BUAP, México.        [ Links ]

10. Hanson S.J. (1990), Conceptual clustering and categorization: bridging the gap between induction and causal models. In Y. Kodratoff and R.S. Michalski, editors. Machine Learning: an artificial intelligence approach, vol. 3, Morgan Kaufmann, Los Altos CA, pp. 235–268.        [ Links ]

11. Lebowitz M. (1986), Concept learning in a rich input domain: Generalization based memory. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell, editors. Machine Learning: an artificial intelligence approach, vol.2, Morgan Kaufmann, Los Altos, CA, pp. 193–214.        [ Links ]

12. Martínez–Trinidad J.F. (2000), Herramientas para la Estructuración Conceptual de Espacios. Tesis para obtener el grado de Doctor en Ciencias de la Computación, CIC, IPN, México.        [ Links ]

13. Martínez–Trinidad J.F., Ruiz–Shulcloper J. (1998), Fuzzy LC conceptual algorithm. In proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing. Aache, Germany, pp. 20–24.        [ Links ]

14. Martínez–Trinidad J.F., Sánchez–Díaz G. (2001), LC a conceptual clustering algorithm. International Workshop on Machine Learning and Data Mining in Pattern Recognition. Leipzig, Germany, pp. 117–127.        [ Links ]

15. McKusick K., Thompson K. (1990), Cobweb/3: A portable implementation. Technical report FIA–90–6–18–2, NASA Ames Research Center.        [ Links ]

16. Michalski R.S. (1980), Knowledge adquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts, (special issue on knowledge acquisition and induction). Policy Analysis and Information Systems 3, pp. 219–244.        [ Links ]

17. Michalski R.S. (1983), Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE transactions on Pattern Analysis and Machine Intelligence, vol. PAMI–5 4.        [ Links ]

18. Michalski R.S. (1986), A theory and methodology of inductive learning. In R.S. Michalski, J. G. Carbonell and T. M. Mitchell, editors. Machine Learning: An artificial intelligence approach, volume 2, Morgan Kaufmann, Los Altos, CA, pp. 83–129.        [ Links ]

19. Michalski R.S., Diday E. (1981), A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts. Progress in Pattern Recognition L.N. Kanal and A. Rosenfeld. North Holland Publishing Company, pp. 33–56.        [ Links ]

20. Michalski R.S., Stepp R.E. (1983), Learning from observation: Conceptual clustering. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell, editors. Machine Learning: An artificial intelligence approach 1, pp. 331–363.        [ Links ]

21. Pons–Porrata A. (1999), RGC: Un nuevo algoritmo de caracterización conceptual. Tesis para obtener el grado de Maestro en Ciencias de la Computación, Universidad de Oriente, Cuba.        [ Links ]

22. Pons–Porrata A., Ruiz–Shulcloper J., Martínez–Trinidad J.F. (2002), RGC: a new conceptual clustering algorithm for mixed incomplete data sets. In Mathematical and Computer Modelling 36, pp. 1375–1385.        [ Links ]

23. Quan T. T., Hiu S. C., Cao T. H. (2004), A Fuzzy FCA–based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data, CLA 2004, pp. 1–12.        [ Links ]

24. Quan T. T., Hui S. C. Cao T. H. (2004), FOGA: A Fuzzy Ontology Generation Framework for Scholarly Semantic Web. In Proceedings of the Knowledge Discovery and Ontologies Workshop, Pisa, Italy.        [ Links ]

25. Ralambondrainy H. (1995), A conceptual version of the K–means algorithm. Pattern Recognition Letters 16, pp. 1147–1157.        [ Links ]

26. Santos–Gordillo J. A., Carrasco–Ochoa J. A., Martínez–Trinidad J. F. (2003), Computing Fuzzy Φ–Testors using a genetic algorithm, WSEAS Transactions on Systems 4/2 pp. 1068–1072.        [ Links ]

27. Seeman W. D., Michalski R. S. (2006), The CLUSTER/3 system for goal–oriented conceptual clustering: method and preliminary results. Proceedings of The Data Mining and Information Engineering 2006 Conference, Prague, Czech Republic, vol. 37, pp. 81–90.        [ Links ]

28. Stepp R.E., Michalski R.S. (1986), Conceptual clustering: inventing goal oriented classifications of structured objects. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell, editors. Machine Learning: an artificial intelligence approach, vol.2, Morgan Kaufmann, Los Altos, CA, pp. 471–498.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License