SciELO - Scientific Electronic Library Online

vol.52 issue6GSX-Px activity, selenium concentration and semen quality on rams supplemented with selenium during reproduction estageForage yield and quality of Gliricidia sepium, Tithonia diversifolia and Cynodon nlemfuensis in monoculture and agroforestry systems author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO



On-line version ISSN 2521-9766Print version ISSN 1405-3195

Agrociencia vol.52 n.6 Texcoco Aug./Sep. 2018


Animal Science

Production of ten varieties of alfalfa (Medicago sativa L.) after four years of being established

Perpetuo Álvarez Vázquez1  * 

Alfonso Hernández Garay1† 

Sergio Iban Mendoza Pedroza2 

Adelaido Rafael Rojas García3 

Claudia Yanet Wilson García4 

José Isidro Alejos-de la Fuente2 

1Ganadería. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México, México. (

2Zootecnia. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México, México.

3Facultad de Medicina Veterinaria y Zootecnia No. 2, CP 41940, Universidad Autónoma de Guerrero, Cuajimalpa, Guerrero, México.

4Universidad Autónoma Chapingo. Carretera San Luis Acatlán- Tlapa km. 5. Predio el Varal. C.P. 41630. San Luis Acatlán, Guerrero, México.


Alfalfa (Medicago sativa L.) is the forage species most commonly used to feed dairy cattle in Mexico. The objective of this study was to evaluate the production of ten varieties of alfalfa, harvested at cutting intervals defined seasonally. The varieties were distributed in 40 plots (9 x 7 m), and the experimental design was completely randomized with four repetitions. The study was performed at the Colegio de Postgraduados, Campus Montecillo, Texcoco, Mexico, from September 2011 to September 2012. The variables evaluated were forage yield (FY), botanical and morphological composition (BMC), leaf:stem ratio (R:L/S), population density of stems (SD) and plant density (PD). The Júpiter variety showed the higher values for FY (14 510 kg DM ha-1), R:L/S (1.8), SD (578 stems m-2) and PD (18 plants m-2), and San Miguelito the lower values for FY (7,890 kg DM ha-1), SD (282 stems m-2) and PD (8 plants m-2). The average FY was (3,508 kg DM ha-1) higher in summer and fall, and lower in winter (2,214 kg DM ha-1 average). In fall and winter they presented higher R:L/S, SD and PD (1.5, 546 stems m-2 and 20 plants m-2 in average). In contrast, in spring-summer, R:L/S, SD and PD were lower (1.0, 371 stems m-2 and 12 plants m-2 in average). The annual FY was 56 %. The undergrowth had the highest contribution (43 %) and the dead material (9 %), the lowest. Júpiter was the most productive variety and summer contributed most to the annual FY. The age of the grassland caused a higher invasion of undergrowth and a lower presence of alfalfa.

Key words: forage yield; botanical and morphological composition; stem density; plant density


La alfalfa (Medicago sativa L.) es la especie forrajera más usada para alimentar al ganado bovino lechero en México. El objetivo de este estudio fue evaluar la producción de diez variedades de alfalfa, cosechadas en intervalos de corte definidos estacionalmente. La hipótesis fue que al menos una de las variedades tiene comportamiento productivo aceptable. Las variedades se distribuyeron en 40 parcelas de 9 x 7 m, en un diseño completamente al azar, con cuatro repeticiones. El estudio se realizó en el CP-Campus Montecillo, México, de septiembre de 2011 a septiembre de 2012. Las variables evaluadas fueron rendimiento de forraje (RF), composición botánica y morfológica (CBM), relación hoja:tallo (R:H/T), densidad poblacional de tallos (DT) y densidad de plantas (DP). La variedad Júpiter mostró RF 14 510 kg MS ha-1, R:H/T 1.8, DT 578 tallos m-2 y DP 18 plantas m-2 mayores y San Miguelito valores menores en RF (7,890 kg MS ha-1), DT (282 tallos m-2) y DP (8 plantas m-2). RF promedio fue (3,508 kg MS ha-1) mayor en verano y en otoño, y menor en invierno (2,214 kg MS ha-1 promedio). En otoño e invierno presentaron R:H/T, DT y DP mayores (1.5, 546 tallos m-2 y 20 plantas m-2 en promedio). En contraste, en primavera-verano R:H/T, DT y DP fueron menores (1.0, 371 tallos m-2 y 12 plantas m-2 en promedio). RF anual fue 56 %. Las malezas tuvieron la aportación mayor (43 %) y el material muerto (9 %) la menor. Júpiter fue la más productiva y el verano contribuyó más al RF anual. La edad de la pradera ocasionó una invasión mayor de malezas y una presencia menor de alfalfa.

Palabras clave: rendimiento de forraje; composición botánica y morfológica; densidad de tallos; densidad de plantas


Alfalfa (Medicago sativa L.) is one of the most important perennial forage species in the world (Török et al., 2010) and the most frequently used for dairy cattle in arid, semiarid and temperate regions of Mexico (Rojas et al., 2016). The importance of alfalfa is due to its production potential, nutritional value, and its utilization as green forage, hay, silage and pellets (Milic et al., 2014; Rojas-García et al., 2017). Global production is centered in USA, Argentina, Canada and China (Alarcón et al., 2011). In Mexico, Jalisco, Hidalgo, Guanajuato and Baja California are the states with largest sown surface, whereas Coahuila, Durango, Estado de México and Puebla have the lowest production (SIAP, 2014). The national availability of alfalfa seed is insufficient, and 85-90 % is imported from USA, Spain and Australia (Salinas, 2005). Studies with alfalfa in different agroclimates allowed identifying which one adapts best to the specific climates and soils. In this regard, Villegas et al. (2004) indicated that the yield of a crop depends on genetic and environmental factors. Thus, the better adaptation and higher yield of alfalfa in temperate regions is a requisite to obtain the maximum economic benefits, for this helps producers avoid uncertainty when sowing it. The objective of this study was to evaluate ten varieties of alfalfa in cutting intervals defined seasonally and to determine the most outstanding variety in terms of forage yield.

Materials and Methods

The study was carried out from September 2011 to September 2012, at Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México (19º 29' N, 98º 53' W and altitude of 2250 m), with temperate sub-humid climate, the driest of this group, mean annual temperature and precipitation of 15 oC and 636 mm (García, 2004). The soil is Typic ustipsamments with loamy sand texture, and pH 7 to 8 (Ortíz, 1997). The total precipitation during the study was 554 mm, with the minimum (0 mm) in January and the maximum (89 mm) in July 2012. The mean annual temperature was 15 °C, the minimum 0.6 °C in December 2011 and the maximum 27 °C in May 2012. The climate conditions at the end of the fall and beginning of winter were characterized by a period of minimum temperatures and frosts, and by maximum temperatures and precipitations in spring-summer. The seasonal distribution of precipitations was 20, 41, 14 and 7 % in spring, summer, fall and winter (Figure 1).

Figure 1 Maximum and minimum monthly mean temperature, and monthly accumulated precipitation during the study (September 2011 to September 2012). 

The varieties evaluated were Vía Láctea, Chipilo, Atlixco, Oaxaca, San Miguelito, Cuf-101, Milenia, Aragón, Valencia, and Júpiter, and they were established on April 18, 2008, with a sowing density of 30 kg of pure viable seed ha-1. The amount was adjusted with the seed weight and the germination percentage per variety. The plots were irrigated to field capacity every 15 d in drought season, weed control was manual, and fertilizer was not applied. The study area was divided into 40 plots of 63 m2 (9 x 7 m). The experimental design was completely randomized with four repetitions. At the beginning of the study a cut was done 5 cm above soil level, with a pruning tractor, in order to obtain a uniform area. The management of seasonal cut from the establishment to the beginning of the study was the same. The spring-summer cut was every 28 d, in fall every 35 d and in winter every 42 d (Rivas et al., 2005). At the beginning of the study, alfalfa occupied close to 80 % of the grassland. The variables were forage yield, botanical and morphological composition, leaf:stem rate, population density of stems and plant density.

The forage yield was determined with the biomass harvested in two fixed squares (0.25 m2) by repetition and established at the beginning of the study. The material in labeled bags was dehydrated at 60 °C until constant weight in a stove with circulating air (Felisa, Mod. FE-243A®). The botanical and morphological composition (BMC) was calculated in a subsample (around 10 %) of fodder. Leaf, stem, dead material, weed and inflorescence were separated and the percentage in dry weight was calculated with the following formula: BMC = dry biomass of each component x 100 / forage yield. The leaf:stem rate was determined with the leaf and stem values of the botanical and morphological composition, dividing the first by the second. The density of stems and plants was defined in two squares of 0.04 m2 (20 x 20 cm) and 1 m2 (100 x 100 cm), respectively, established at the beginning of the study in each repetition.

The experimental design was completely randomized, with four repetitions. The results were analyzed with ANOVA, PROC GLM and the means were compared with the Tukey test (p ≤ 0.05) (SAS version 9.2; SAS Institute, Inc., 2009).

Results and Discussion

Forage yield

Júpiter showed higher annual forage accumulation (14,510 kg DM ha-1) and San Miguelito, Cuf-101 and Valenciana the lowest yields (8,020 kg DM ha-1, average), with 81 % less than Júpiter (Table 1). Regardless of the variety, the highest seasonal yield was in summer (3,508 kg DM ha-1), whereas in fall and winter it was 58 % lower (2,214 kg DM ha-1). All the varieties showed seasonality with the tendency: summer (33 %) > spring (26 %) > winter (21 %) > fall (20 %). This behavior depended on the direct and close relation between the forage yield and the optimal temperatures for alfalfa growth (Rojas et al., 2012), which were present in summer (Figure 1).

Table 1 Seasonal and annual forage yield (kg DM ha-1) of alfalfa. 

Variedad Otoño Invierno Primavera Verano Anual EEM
Vía Láctea 2350 BCb 2489 ABab 3613 Aa 3590 ABa 12042 AB 571
Chipilo 2116 CDa 2595 ABa 3156 ABCa 3247 ABa 11115 B 548
Atlixco 1962 CDEb 2445 ABb 2623 CDb 4527 Aa 11557 B 394
Oaxaca 2075 CDb 2793 Aab 3230 ABCab 3439 ABa 11537 B 640
San Miguelito 1692 DEb 1644 Bb 1872 Db 2682 Ba 7890 C 256
Cuf-101 1726 DEbc 1687 Bc 1931 Db 2745 Ba 8089 C 106
Milenia 2647 ABab 2414 ABb 2767 BCab 3638 ABa 11466 B 506
Aragón 2124 CDc 2292 ABbc 3516 ABab 3623 ABa 11554 B 614
Valenciana 1523 Ec 1806 ABb 1872 Db 2878 Ba 8080 C 510
Júpiter 2999 Ac 2883 Ac 3919 Ab 4709 Aa 14510 A 115
Promedio 2122 c 2306 c 2850 b 3508 a 10784 146
EEM 202 456 334 638 1138

Average values with different capital letter in a column and different lowercase letter in a row are different (p ≤ 0.05). EEM: mean standard error.

Mendoza et al. (2010) reported a similar seasonal behavior in the forage yield, with the variety San Miguelito and cutting interval of 6 to 7 weeks, and the higher production was in summer (10,638 kg DM ha-1) with a seasonal distribution of 31, 26, 23 and 20 % in summer, spring, fall and winter. Teixeira et al. (2007) evaluated the Kaituna variety, with cutting interval of 42 d, and the lowest values were in winter and beginning of spring (2,000 and 3,000 kg DM ha-1, respectively) as compared to spring (3000 kg DM ha-1). However, Morales et al. (2006) obtained the highest yields (5,500 kg DM ha-1) at the end of winter (February and March) and beginning of fall (September and October), and the lowest (2,000 kg MS ha-1) at the beginning of summer (June-July). They indicated that these yields coincided with the months of highest and lowest temperature in the study region (Mixteca Region, Oaxaca). The values from our study were lower than those by Villegas et al. (2004) in the Valenciana variety, which accumulated more fodder (4,700 kg DM ha-1) in spring. The lower yields in our study, as compared to those by Villegas et al. (2004), Morales et al. (2006) and Teixeira et al. (2007), may be due to the fact that the grassland was in the fourth year of production, with lower persistence, higher competition from undergrowth, and depletion of carbohydrate reserves. In this regard, Mendoza et al. (2010) mentioned that the depletion in carbohydrate reserves in plants reduces the yield.

Botanical and morphological composition

Alfalfa was 56 % of the accumulated annual yield, and 44 % was grasses, undergrowth and dead material (Figure 2). The highest production per season (60 %) was obtained in fall and spring, and the lowest in summer (25 %). Júpiter showed the highest annual average (60 %) of leaf and stem, and the lowest of undergrowth (33 %) and dead material (7 %). The highest average annual invasion was found in Chipilo (56 %). Regardless of the variety, the contribution of alfalfa to the yield decreased progressively with the time of study (Figure 2); in contrast, the weed increased from 30 to 63 %. The highest amounts of leaf and stem were found in spring (31 and 29 % in average), and in fall and summer those of dead material (14 %) and undergrowth (63 %), respectively. In the grassland, the persistence of alfalfa decreased due to the interspecific competition over light, water and nutrients with other species (Villegas et al., 2006), which depletes the carbohydrate reserves and decreases the fodder yield (Mendoza et al., 2010). Cinar and Hatipoglu (2014) observed contributions of 52 % from alfalfa to the fodder yield on the third year after being established and confirmed that this species does not maintain the yield potential between years; they also mentioned that the contribution of alfalfa in mixed grasslands decreases significantly with the age of the grassland. Our results were similar to those of Sevilla et al. (2002), who reported death of more plants during spring-summer and that the alfalfa yield is maintained if the minimum plant density is 30 m-2, which was on the fourth year of the grassland being established. According to Teixeira et al. (2007), the percentage of undergrowth in the grassland increased with the age of the alfalfa cultivation.

Figure 2 Seasonal changes in the botanical and morphological composition (%) of alfalfa (Medicago sativa L.) varieties, harvested at cutting intervals defined seasonally in spring-summer, fall and winter: 28, 35 and 42 d, from September 2011 to September 2012. MM: dead material. 

The leaf contributed less (p ≤ 0.05) to the yield in summer and more in fall, winter and spring (31, 31 and 29 %; p ≤ 0.05). The stem showed a higher contribution in spring (29 %) and lower in summer (15 %). The dead material was 14 % more abundant in fall compared to winter (8 %), spring (7 %) and summer (6 %) (p ≤ 0.05). In this regard, Mendoza et al. (2010) found a higher amount of leaf in winter and of dead material in summer.

Leaf:stem rate

Significant differences in the leaf:stem rate were found between varieties in all the seasons of the year and in the annual average (p ≤ 0.05). The varieties with the highest annual average of leaf:stem rate were Júpiter and Oaxaca (1.8 and 1.4). The highest leaf:stem rate between varieties (1.6) was found in fall and Júpiter stood out for the highest value (3.3). The seasonal tendency showed the following order: fall > winter > spring > summer (1.6, 1.4, 1.1 and 1.0 respectively). The Chipilo, Oaxaca, Milenia, San Miguelito and Valencia varieties did not show differences between seasons (Table 2). According to Villegas et al. (2004), the seasonal behavior was: fall > summer > winter > spring; besides, the decrease in the leaf:stem rate during the warmer months is related to the higher production of dry matter, due to the increment in individual weight of the stems. Lamb et al. (2014) observed a higher leaf:stem rate in June (beginning of summer), and they related it to the early age of regrowth and, besides, the lowest leaf:stem rate was during the later stages of flowering. Halim et al. (1989) reported values of 0.7 with 21 d of regrowth and 0.6 with 49 d, and in our study the cutting intervals are similar to those results. According to Morales et al. (2006), the leaf:stem rate had an inverse behavior to the yield in dry matter and the growth rate, primarily in the warmest months of the year, which coincides with the accelerated replacement of tissue and causes a higher leaf fall. However, the value recorded in the Júpiter variety of our study (Table 2) was similar to that obtained by Villegas et al. (2006) in the Valenciana variety (3.4) in fall.

Table 2 Seasonal changes and annual average in the leaf:stem rate of alfalfa. 

Variedad Otoño Invierno Primavera Verano Promedio EEM
Vía Láctea 1.5 Ba 1.3 BCab 1.4 Aa 1.0 ABb 1.3 B 0.1
Chipilo 1.0 Ba 1.2 BCa 1.1 ABCa 0.9 ABa 1.1 B 0.2
Atlixco 2.0 Ba 1.4 ABCab 0.9 Cab 0.7 Bb 1.1 B 0.3
Oaxaca 2.1 ABa 1.2 Ca 1.1 ABCa 1.3 Aa 1.4 AB 0.6
San Miguelito 1.0 Ba 1.1 Ca 1.2 BCa 1.0 ABa 1.1 B 0.1
Cuf-101 0.8 Bb 1.7 Aa 1.1 ABCb 1.0 ABb 1.2 B 0.1
Milenia 1.6 Ba 1.5 ABCa 1.0 BCa 1.0 ABa 1.2 B 0.3
Aragón 1.4 Bab 1.6 ABCa 1.3 ABab 1.1 ABb 1.3 B 0.2
Valenciana 1.8 Ba 1.2 BCa 1.0 BCa 1.0 ABa 1.3 B 0.4
Júpiter 3.3 Aa 1.7 Ab 1.0 BCc 1.0 ABc 1.8 A 0.2
Promedio 1.6 a 1.4 ab 1.1 bc 1.0 c 1.3 0.1
EEM 0.6 0.1 0.1 0.2 0.1

Average values with different capital letter in a column and with different lowercase letter in a row are different (p ≤ 0.05). EEM: standard error of the mean.

Population density of stems

The Júpiter and Aragón varieties showed the highest annual averages in population density of stems (578 and 542 stems m-2), San Miguelito presented the lowest density (p ≤ 0.05) (Table 3), and the differences between seasons were significant (p ≤ 0.05). The highest (546 stems m-2) and lowest (362 stems m-2) population amount of stems was observed in winter and spring, and the seasonal order was winter (546 stems m-2) > fall (450 stems m-2) > summer (380 stems m-2) > spring (362 stems m-2). These results had an inverse relation with the forage yield of all the varieties (Table 1), due to the lower growth during fall and winter (Rojas et al., 2016) and was compensated by the higher density of small stems (Rivas et al., 2005; Rojas et al., 2016), known as law of auto-clearing (Hernández-Garay et al., 1999). In this regard, Teixeira et al. (2007) pointed out that in the basal stratum of the plant the environmental factors, such as temperature and light, control the dynamic of stem appearance; thus, when the canopy opens, the light stimulates regrowth and delays senescence. Ventroni et al. (2010) found densities of 336 to 700 stems m-2, with average of 435 stems m-2. Teixeira et al. (2007) observed higher amounts (780 to 900 stems m-2) and in alfalfa populations with cutting intervals of 28 and 42 d, the average values can be 784 stems m-2 and a leaf area index of 2.1.

Table 3 Seasonal changes and annual average of the population density of stems (stems m-2) of alfalfa varieties. 

Variedad Otoño Invierno Primavera Verano Promedio EEM
Vía Láctea 422 ABCDb 531 ABb 542 Aa 428 ABa 481 ABC 35
Chipilo 382 ABCDa 457 ABa 313 BCDEa 301 ABa 363 ABC 109
Atlixco 563 ABCa 588 ABa 415 ABCDa 536 Aa 525 AB 118
Oaxaca 423 BCDa 506 ABa 360 ABCDEa 340 ABa 407 ABC 172
San Miguelito 299 Db 425 Ba 173 Ed 232 Bc 282 C 26
Cuf-101 358 CDb 540 ABa 263 CDEc 270 ABbc 358 ABC 42
Milenia 488 ABCDa 596 ABa 452 ABCa 430 ABa 492 ABC 84
Aragon 579 ABa 690 Aa 390 ABCDEa 508 ABa 542 A 215
Valenciana 385 ABCDa 422 Ba 213 DEa 256 Ba 319 BC 112
Júpiter 601 Aab 711 Aa 505 ABb 496 ABb 578 A 69
Promedio 450 b 546 a 362 c 380 bc 435 34
EEM 91 138 91 115 94

Average values with different capital letter in a column and with different lowercase letter in a row are different (p ≤ 0.05). EEM: standard error of the mean.

Plant density

Between varieties and seasons of the year, the average annual plant density changed (p ≤ 0.05; Table 4). Júpiter, Vía Láctea, Milenia, Atlixco and Oaxaca had the highest annual values (17 plants m-2 average), and the lowest value was for Valenciana (8 plants m-2). The seasonal averages tended to decrease during the study as follows: fall (20 plants m-2), winter (16 plants m-2), spring (13 plants m-2) and summer (11 plants m-2). In this regard, Sevilla et al. (2002) pointed out that the death of plants is higher in spring and summer, and then the plant density tends to increase. The forage yield (Table 1) contrasted with the number of average plants in each season, and the higher yields of forage during spring and summer are due to the favorable conditions of light and temperature (Figure 1) for alfalfa growth (Rojas et al., 2012). And, according to Rojas et al. (2016), in five alfalfa varieties the growth rate, intercepted radiation, leaf area index, and plant height were higher in spring-summer. However, Villegas et al. (2006) pointed out that in order to maintain the persistence of the grassland and the forage yield, the interval of plant exploitation should be defined for each season of the year, based on the speed of growth. According to Améndola et al. (2005), the useful life of alfalfa grasslands is three years, because the cutting frequency (9 to 11 cuts) causes a lower persistence of the plant population. Villegas et al. (2006) explain that frequent cutting or grazing cause a fast disappearance of plants of the desired species due to the depletion of carbohydrate reserves.

Table 4 Seasonal changes in alfalfa plant density (plants m-2). 

Variedad Otoño Invierno Primavera Verano Promedio EEM
Vía Láctea 23 Aa 20 Ab 17 Ac 14 Ad 18 A 1
Chipilo 19 ABa 14 ABa 11 ABa 9 ABa 13 AB 6
Atlixco 21 ABa 19 Aa 15 ABa 14 Aa 17 A 4
Oaxaca 21 ABa 17 ABab 15 ABab 10 ABb 16 A 4
San Miguelito 19 ABa 13 ABb 10 ABb 8 ABb 12 AB 2
Cuf 101 17 ABa 15 ABab 12 ABab 10 ABb 14 AB 3
Milenia 21 ABa 17 Aab 15 ABb 14 Ab 17 A 2
Aragon 19 ABa 14 ABa 13 ABa 10 ABa 14 AB 6
Valenciana 14 Ba 9 Bb 6 Bbc 5 Bc 8 B 2
Júpiter 22 Aa 19 Aab 17 Ab 14 Ab 18 A 3
Promedio 20 a 16 b 13 bc 11 c 15 2
EEM 3 4 4 3 3

Average values with different capital letter in a column and with different lowercase letter in a row are different (p ≤ 0.05). EEM: standard error of the mean.


The Júpiter variety presented the best productive behavior and leaf:stem rate. The highest accumulated annual yield was obtained in summer. Regardless of the variety, the age of the grasslands influences the invasion of undergrowth and plant density of alfalfa, which affects its persistence. The highest population density of stems was found in winter and the lowest in spring. The Júpiter and Aragón varieties showed the highest stem population densities and San Miguelito the lowest.

Literatura Citada

Alarcón, Z, B.., G. C. Ortega N., S. S. Gonzales M., T. Cervantes M., R. , y Venegas O. 2011. Manual de la selección genética y molecular, producción de semilla de alfalfa en el Valle del Mezquital, Hidalgo. Fundación Hidalgo Produce A.C. México. 80 p. [ Links ]

Améndola, M. R. D., G. Castillo E., y P. A. Martínez H. 2005. Perfiles por país del recurso pastura/forraje. Organización de las Naciones Unidas para la Alimentación y la Agricultura. (Consulta: octubre 2015). [ Links ]

Cinar, S., and Hatipoglu, R. 2014. Forage yield and botanical composition of mixtures of some perennial warm season grasses with alfalfa (Medicago sativa L.) under mediterranean conditions. Turk. J. Field Crops 19: 13-18. [ Links ]

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Koppen. 4ª ed. Universidad Nacional Autónoma de México. México, D. F. 217 p. [ Links ]

Halim, R. A., D. Buxton R., M. Hattendorf J., and R. Carlson E. 1989. Water-stress effects on alfalfa quality after adjustments for maturity differences. Agron. J. 81: 18-94. [ Links ]

Hernández-Garay, A., C. Matthew, and Hodgson J. 1999. Tiller size-density compensation in ryegrass miniature swards subject to differing defoliation heights and a proposed productivity index. Grass Forage Sci. 154: 347 - 356. [ Links ]

Lamb, J. F. S., G. Hans-Joachim J., and R. Heathcliffe. 2014. Growth environment, harvest management and germplasm impacts on potential ethanol and crude protein yield in alfalfa. Biomass Bioenergy 63: 114-125. [ Links ]

Mendoza, P. S. I., A. Hernández G., J. Pérez P., A. R. Quero C., J. A. S. Escalante, E.J. L. Zaragoza R., y O. Ramírez R. 2010. Respuesta productiva de la alfalfa a diferentes frecuencias de corte. Rev. Mex. Ciencias Pec. 1: 287-296. [ Links ]

Milic, D., D. Karagic, S. Vasiljevic, A. Mikic, B. Miloševic, and S. Katic. 2014. Breeding and improvement of quality traits in alfalfa (Medicago sativa L.). Genetika 46: 11-18. [ Links ]

Morales, A. J., J. Jiménez L., V. A. Velasco V., Y. Villegas A., J. R. Enríquez del V., y A. Hernández G. 2006. Evaluación de 14 variedades de alfalfa con fertirriego en la mixteca de Oaxaca. Téc. Pecu. Méx. 44:277-288 p. [ Links ]

Ortíz, S., C. 1997. Colección de Monolitos. Departamento de génesis de suelos. Edafología. IRENAT. Colegio de Postgraduados. Montecillo, Texcoco, Estado de México. 123 p. [ Links ]

Rivas, J. M. A., C. López C., A. Hernández G., y P. Pérez J. 2005. Efecto de tres regímenes de cosecha en el comportamiento productivo de cinco variedades comerciales de alfalfa (Medicago sativa L.). Téc. Pecu. Méx. 43: 79-92. [ Links ]

Rojas, G. A. R., A. Hernández G., S. Joaquín, C., S. I. Mendoza, P., J. D. Guerrero R., y J. L. Zaragoza R. 2012. Comportamiento productivo y rendimiento de forraje de cinco variedades de alfalfa. 2da Reunión Internacional conjunta de manejo de pastizales y producción animal. Zacatecas, México. pp: 336-340. [ Links ]

Rojas, G. A. R., A. Hernández G., S. Joaquín C., M. de los A. Maldonado P., S. I. Mendoza P., P. Álvarez V., y B. M. Joaquin T. 2016. Comportamiento productivo de cinco variedades de alfalfa. Rev. Mex. Cienc. Agríc. 7: 1855-1866. [ Links ]

Rojas-García, A. R., N. Torres-Salado, S. Joaquín-Cancino, A. Hernández-Garay, M. de los Á. Maldonado-Peralta, y P. Sánchez-Santillán. 2017. Componentes del rendimiento en variedades de alfalfa (Medicago sativa L.). Agrociencia 51: 697-708. [ Links ]

Salinas, C. S. 2005. Pasado, presente y futuro de la alfalfa (Medicago sativa L.) en México. Semillas Berentsen. Departamento de Investigación y Desarrollo. 4 p. [ Links ]

SAS, Institute. 2009. SAS/STAT® 9.2. User´s Guide Release. Cary, NC: SAS Institute Inc. USA. [ Links ]

Sevilla, G. H., M. Pasinato, A. y M. García J. 2002. Producción de forraje y densidad de plantas de alfalfa irrigada comparando diferentes densidades de siembra. Arch. Latinoam. Prod. Animal 10: 164-170. [ Links ]

SIAP, 2014. Servicio de Información Agroalimentaria y Pesquera. Disponible en: (Consulta: noviembre 2014). [ Links ]

Teixeira, E. I., M. Derrick J., B. Hamish B., and A. Fletcher L. 2007. The dynamics of lucerne (Medicago sativa L.) yield components in response to defoliation frequency. Eur. J. Agron. 26: 394-400. [ Links ]

Török, P., K. András, O. Valkó, B. Deák, B. Lukács, and B. Tóthmérész. 2010. Lucerne-dominated fields recover native grass diversity without intensive management actions. J. Appl. Ecol. 48: 257-264. [ Links ]

Ventroni, L. M., J. Volenec J., and C. Cangiano A. 2010. Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crop. Res. 119:252-259. [ Links ]

Villegas, A. Y., A. Hernández G., J. Pérez P., C. López C., J. G. Herrera H., y J. F. Enriquez Q. 2004. Patrones estacionales de crecimiento de dos variedades de alfalfa (Medicago sativa L.). Téc. Pecu. Méx. 42:145-158. [ Links ]

Villegas, A. Y., A. Hernández G., P. A. Martínez H., J. Pérez P., J. G. Herrera H., y C. López C. 2006. Rendimiento de forraje de variedades de alfalfa en dos calendarios de corte. Rev. Fitotec. Mex. 29: 369 - 372. [ Links ]

Received: April 2017; Accepted: November 2017

*Autor para correspondencia:

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons