SciELO - Scientific Electronic Library Online

vol.23 número1Efecto de la temperatura sobre el incremento en peso, sobrevivencia y preferencia térmica de juveniles del acocil Cherax quadricarinatusLa sensibilidad del grupo coliforme como indicador de la presencia de enterobacterias patógenas en cuatro cuerpos acuáticos de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO



versión impresa ISSN 0188-8897

Hidrobiológica vol.23 no.1 Ciudad de México ene./abr. 2013




Lethal effects of five metals on the freshwater rotifers Asplanchna brigthwellii and Brachionus calyciflorus


Efectos letales de cinco metales en los rotíferos dulceacuícolas Asplanchna brigthwellii y Brachionus calyciflorus


Gustavo Emilio Santos-Medrano and Roberto Rico-Martínez


Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria Aguascalientes, Ags., 20131. México e-mail:


Recibido: 9 de septiembre del 2011.
Aceptado: 07 de enero del 2013.



Acute toxicity tests of five metals (aluminum, cadmium, iron, lead, zinc) were performed to determine LC50 values in two species of freshwater rotifers: Asplanchna brigthwellii and its prey Brachionus calyciflorus. We conducted the tests using neonates less than 24 hr-old, each test consisted of five replicates, negative control and five metal concentrations (Al, Cd, Fe, Pb, Zn). We found that the prey rotifer B. calyciflorus was more sensitive to Al, Cd, Pb and Fe than the predator rotifer A. brightwellii. For both rotifers Cd was the most toxic of the five metals. It was established that the strain of B. calyciflorus studied is sensitive when compared with other B. calyciflorus strains and other species and genera of the family Brachionidae. In the other hand, LC50 values of A. brigthwellii are compared with rotifer and copepod predators.

Key words: Acute toxicity, aquatic toxicology, LC50, metal toxicity, trophic interactions.



Se realizaron pruebas de toxicidad aguda con cinco metales (aluminio, cadmio, hierro, plomo, zinc) para determinar los valores CL50 en dos especies de rotíferos dulceacuícolas: Asplanchna brigthwellii y su presa Brachionus calyciflorus. Para las pruebas se usaron neonatos menores de 24 horas, cada prueba consistió de cinco replicas, un control negativo y cinco concentraciones (Al, Cd, Fe, Pb, Zn). Se determinó que el rotífero B. calyciflorus fue más sensible al Al, Cd, Pb y Fe que su rotífero depredador A. brigthwellii. Para ambas especies el Cd fue el metal más tóxico de los cinco evaluados. Se comprobó que la cepa estudiada de B. calyciflorus es sensible al compararla con otras cepas de B. calyciflorus y otros géneros y especies de la familia Brachionidae. También se compararon los valores de CL50 del rotífero A. brigthwellii con otros rotíferos y copépodos depredadores.

Palabras clave: CL50, interacciones tróficas, toxicidad aguda, toxicidad de metales, toxicología acuática.



The assessment of metals effects in water is important due to their high toxicity and persistence, and rapid uptake by organisms. Metals are difficult to eliminate in the environment, since organisms incorporate them into their tissues and transferred to predators (Förstner & Prosi, 1979). Toxicity is proportional to the amount of metal absorbed by aquatic organisms. A metal dissolved in ionic form can be absorbed more easily than in its elemental form, while the reduced form increases the likely metal toxicity due to oxidation and retention in different organs. Usually metals are not removed from aquatic ecosystems by natural processes because they are not biodegradable (Förstner & Wittmann, 1981). Metals tend to form associations with minerals (carbonates, sulfates) as well as with organic substances, by phenomena of ion exchange, adsorption, chelation, formation of chemical combinations, etc., and therefore accumulate in the environment, mainly in the sediments of rivers and lakes (Förstner & Wittmann, 1981; Dekov et al., 1998). Metals are indicators of the ecological quality of water because of their high toxicity and bioaccumulative behavior (Purves, 1985). Rotifers are common in freshwater zooplankton communities. Species of the genus Brachionus are sensitive to different toxicants (metals and organic compounds), consequently they can be used as standard toxicity test organisms. On the other hand, Asplanchna is an important predator on smaller zooplankton; rotifers, ciliates and cladocerans (Wallace et al., 2006). Both genera are important organisms in freshwater food webs.

Toxicity tests using rotifers are becoming an interesting alternative to traditional methods using cladocerans. These tests measure various parameters such as mortality, reproduction, behavior, physiology, biochemistry or molecular biology, and microcosms (Snell & Janssen, 1995). As a starting point of a broader research it has been proposed to assess the toxicity in a battery of freshwater organisms of different trophic levels and to determine the 24-h LC50 (median lethal concentration) values of aluminum, cadmium, iron, lead and zinc in the freshwater predator rotifer Asplanchna brigthwellii (Gosse 1850) and its rotifer prey Brachionus calyciflorus, Pallas 1766 (Gilbert, 1967). Our hypothesis states than since B. calyciflorus is located in a lower trophic level it should be more sensitive to toxicant effects of metals than A. brigthwellii Gosse 1850 the predator of B. calyciflorus.



Asplanchna brightwellii females carrying embryos were placed in a 24-well polystyrene plate (one female per well to avoid cannibalism), then incubated at 25 °C, photoperiod 16:8 (l:d) in absence of food. Neonates less than 24-hr-old were collected next day. Ten neonate females were placed in bottles of 20 ml total volume; with a test volume of 5 ml. On the other hand, Brachionus calyciflorus neonates less than 24-hr-old hatching from cysts were placed in a 24-well polystyrene plate (ten neonates per well) with a test volume of 1 ml. For both species, each test consisted of five replicates, negative control EPA medium pH 7.5 (USEPA, 1985), and five metal concentrations (atomic absorption standards of aluminum, cadmium, iron, lead, zinc from Sigma-Aldrich Co). All metals were in 2% nitric acid solution). In order to derive LC50 for all metals, we performed a range-finding test. For the definitive test, five toxicant concentrations are chosen covering the 0 and 100% mortality concentration range (Table 1) determined in the range-finding test. The animals were Incubated for 24 hours at 25 °C, photoperiod 16:8 (l:d) in absence of food. At the end of incubation, dead animals were counted using a stereomicroscope. A one-way analysis or variance (ANOVA) and Duncan's test were calculated to compare mortality percentages for each toxicant concentration to that of the control. From these data the NOEC (No observed effect concentration) and LOEC (Lowest observed effect concentration) values were calculated. The LC50 values were calculated using regression between probit units and the logarithm of each toxicant concentration using the software Statistica 6.0 (StatSoft Inc., 2001).



The range of LC50 values for A. brightwellii were between 0.146-0.358. Cadmium was the most toxic of the five metals investigated with a LC50 value of 0.146. On the other hand, Fe was the least toxic metal with a LC50 value of 0.358 (Table 2).The highest NOEC values was 0.5 (Fe) and the lowest 0.1 (Al and Cd). The highest LOEC values was 1.0 (Fe) and the lowest 0.25 (Cd) (Table 2). The range of LC50 for B. calyciflorus were 0.094-0.324. Cadmium was again the most toxic metal and zinc was the least toxic one. The highest NOEC was Pb (0.25) and the lowest Al (0.01) (Table 3). The highest LOEC was Fe (1.0) and the lowest Al (0.05). All values were in mgl-1.

We found that B. calyciflorus was more sensitive to all metals, except Zn, than A. brightwellii when the LC50 values were compared (compare Table 2 and Table 3). Regarding NOEC values B. calyciflorus was more sensitive to all metals than A. brightwellii. When LOEC values were compared B. calyciflorus was more sensitive to Al, Cd and Zn than A. brightwellii. There were the same LOEC values for Fe, and A. brightwellii was more sensitive than B. calyciflorus for Pb (Compare Table 2 and Table 3).



We found enough data on the literature to compare the sensitivity (24-h LC50) of B. calyciflorus with other species of the family Brachionidae (Table 4). For Al B. calyciflorus (0.105 mgl-1, this work) was more sensitive than the strain used by Snell et al. (1991b) (>3.0 mgl-1 ), the same effect was observed with Pb (B. calyciflorus 0.77 mg l-1, this work), (Snell et al., 1991a), B. plicatilis Müller, 1786 (4.0 mgl-1 Snell et al., 1991b) and B. patulus Müller, 1776 (6.15 mgl-1 García-García et al., 2007) (Table 4).

Cadmium was the metal that showed greater variation in the LC50 values in the family Brachionidae with a range of 0.09 mgl-1 (B. patulus, Sarma et al., 2006) -39 mgl-1 (B. plicatilis, Snell et al., 1991a). In addition LC50 values of Zn (B. calicyflorus 0.324 mgl-1, this work) was more sensitive than others strains of B. calyciflorus, 1.3 mgl-1 (Snell et al. 1991b), 1.32 mgl-1 (Couillard et al., 1989), and 1.67 mgl-1 (Nelson & Rolin, 1998) (Table 4).

Anuraeopsis fissa Gosse, 1851 was the most sensitive to Zn (0.31 mgl-1) its CL50 value being similar to that of B. calyciflorus (0.324 mgl-1) used in this work (Table 4).

We found enough data on the literature to compare the sensitivity (24-h LC50 and EC50) of A. brightwellii with other copepod or rotifer predator species preying on rotifers (Table 5). A. brightwellii (0.174 mgl-1, this work) was more sensitive to Al than Acanthocyclops vernalis Fischer, 1853 (Havens, 1991; Al LC50 value = 0.54 mgl-1) and Mesocyclops edax Forbes 1891 (Havens, 1991) with a very close value (0.58 mgl-1) (Table 5). The toxic effects of Cd were LC50 value for A. brightwellii (0.146 mgl-1) and Megacyclops viridis Jurine, 1820 (LC50 0.0005 mgl-1, Braginskij & Shcherban, 1979) have a difference of 292-fold lower than A. brightwellii ( this work, see table 5) otherwise, it showed a value very close to Eurytemora affinis Poppe, 1880(LC50 0.13 mgl-1) . The EC50 value (0.05 mgl-1) of the copepod T. prasinus mexicanus Kiefer, 1938 (Lalande & Pinel-Alloul, 1986) was 4.44-fold lower than the LC50 (0.222 mgl-1) value for A. brigthwellii for Zn (Table 5).

The high toxicity of Al is influenced by the aqueous chemistry, and is extremely complex. The changes in the molecular form or concentration of Al are largely dependent on its pH. Other factors include complexes with ligands (Wauer et al., 2004). While Zn is an essential trace element for living organisms, it was more toxic than Pb to A. brightwellii.

When we compared rotifer predators, A. brigthwellii was more sensitive than A. vernalis (copepod) to Al. Our hypothesis was partially fulfilled; B. calyciflorus was more sensitive to four metals (Al, Cd, Fe, Pb) than A. brigthwellii.



We thank to Dr. F. J. Flores-Tena for his comments and recommendations. Thanks to the National Council for Science and Technology for a grant (CONACYT Ref. 209263).



Braginskij, L. P. & E. P. Shcherban. 1979. Acute toxicity of heavy metals to aquatic invertebrates under different temperature conditions. Hydrobiological Journal 14 (6) 78-82.         [ Links ]

Couillard, Y., P. Ross & B. Pinel-Alloul. 1989. Acute toxicity of six metals to the rotifer Brachionus calyciflorus, with comparisons to other freshwater organisms. Toxicity Assessesment 4 (4):451-462.         [ Links ]

Dekov, V. M., F. Araujo, R. Van Grieken & V. Subramanian. 1998. Chemical composition of sediments and suspended matter from the Cauvery and Brahmaputra rivers (India). The Science of the Total Environment 212: 89-105.         [ Links ]

Förstner, U. & F. Prosi. 1979. Heavy metal pollution in freshwater ecosystems. In: Ravera, O. (Ed.). Biological Aspects of Freshwater Pollution. Pergamon Press, Oxford. Great Britain. 486 p.         [ Links ]

Förstner, U. & G. T. W. Wittmann. 1981. Metal pollution in the aquatic environment. Berlin, Heidelberg, New York, Springer-Verlag. 486 p.         [ Links ]

García-García, G., E. A. Picazo-Páez, S. & S. S. S. Sarma. 2007. Combined effects of sediment and lead (PbCl2) on the demography of Brachionus patulus (Rotifera: Brachionidae). Hydrobiologia 593: 209-218.         [ Links ]

Gilbert, J. J. 1967. Asplanchna and postero-lateral spine production in Brachionus calyciflorus. Archiv fuer Hydrobiologie 64:1-62.         [ Links ]

Havens, K. E. 1991. Littoral zooplankton responses to acid and aluminum stress during short-term laboratory bioassays. Environmental Pollution 73 (1): 71-84.         [ Links ]

Juárez-Franco Marissa Fernanda, S. S. S. Sarma & S. Nandini. 2007. Effect of cadmium and zinc on the population growth of Brachionus havanaensis (Rotifera: Brachionidae). Journal of Environmental Science and Health Part A 42: 1489-1493.         [ Links ]

Lalande, M. & B. Pinel-Alloul. 1986. Acute toxicity of cadmium, copper, mercury and zinc to Tropocyclops prasinus mexicanus (Cyclopoidea, Copepoda) from Three Quebec Lakes. Environmental Toxicology and Chemistry 5 (1): 95-102.         [ Links ]

Marten Gerald, G. & W. Janet Reid. 2007. Cyclopoid copepods. Journal of the American Mosquito Control Association 23 (2): 65-92.         [ Links ]

Nelson, S. M. & R. A. Roline. 1998. Evaluation of the sensitivity of rapid toxicity tests relative to Daphnid acute lethality tests. Bulletin of Environmental Contamination and Toxicology 60: 292-299.         [ Links ]

Purves, D. 1985. Trace- element contamination of the environment. Fundamental aspects of pollution control and environmental science. Elsevier. Amsterdan, Holland. 243 p.         [ Links ]

Ramos-Rodríguez, E. & J.M. Conde-Porcuna. 2004. Impact of copepod predation on the fecundity of Keratella choclearis (Rotifera). Archiv für Hydrobiologie 4 (12): 541-522.         [ Links ]

Sarma S. S. S., F. Martínez-Jerónimo, T. Ramírez-Pérez & S. Nandini. 2006. Effect of cadmium and chromium toxicity on the demography and population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera). Joumal of Environmental Science and Health Part A. 41: 543-558 (2006).         [ Links ]

Sarma, N., D.J. Chaparro-Herrera, S. L. Cárdenas-Arriola & S. S. S. Sarma. 2007a. Population growth of Brachionus macracanthus (Rotifera) in relation to cadmium toxicity: Influence of algal (Chlorella vulgaris) density. Journal of Environmental Science and Health Part A 42: 1467-1472.         [ Links ]

Sarma S. S. S., Rubén Azuara-García & S. Nandini. 2007b. Combined effects of zinc and algal food on the competition between planktonic rotifers, Anuraeopsis fissa and Brachionus rubens (Rotifera). Aquatic Ecology 41:631-638.         [ Links ]

Snell T. W. & G. Persoone. 1989. Acute toxicity bioassays using rotifers. I: A test for brackish and marine environments with Brachionus plicatilis. Aquatic toxicology 14 (1): 65-80.         [ Links ]

Snell, T.W., B.D. Moffat, C. Janssen & G. Persoone. 1991a. Acute toxicity tests Using Rotifers III. Effects of temperature, strain and exposure time on the sensitivity of Brachionus plicatilis. Environmental Toxicology and Water Quality 6: 63-75.         [ Links ]

Snell, T. W., B. D. Moffat, C. Janssen & G. Persoone. 1991b. Acute Toxicity Tests Using Rotifers IV. Effects of cyst age, temperature, and salinity on the sensitivity of Brachionus calyciflorus. Ecotoxicology and Environmental Safety 21 (3): 308-317.         [ Links ]

Snell, T. W. & C. R. Janssen. 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313/314: 231-247.         [ Links ]

StatSoft, Inc. 2011. STATISTICA (data analysis software system), version 6.         [ Links ]

Stemberger, R. S. & J. J. Gilbert. 1984. Spine development in the rotifer Keratella choclearis: induction by cyclopoid copepods and Asplanchna. Freshwater Biology 14: 639-647.         [ Links ]

Sullivan, B. K., E. Buskey, D.C. Miller & P.J Ritacco. 1983. Effects of Copper and Cadmium on Growth, Swimming and Predator Avoidance in Eurytemora affinis (Copepoda). Marine Biology 77 (3): 299-306.         [ Links ]

US EPA (US Environmental Protection Agency). 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms (3rd Ed.). Office of Research and Development, US Environmental Protection Agency, Cincinnati. EPA/600/4-85/013. 370p.         [ Links ]

Wallace, R. L., Snell, T. W., Ricci, C. & Nogrady, T. 2006. Rotifera, Volume 1: biology, Ecology and Systematics. In: Segers, H. &H. J. Dumont (Eds.). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. No. 23. 2nd edn. Leiden, The Netherlands: Backhuys Publishers. 229 p.         [ Links ]

Wauer, G., Heckeman H.-J. & R. Koschel. 2004. Analysis of toxic aluminum species in natural waters. Microchimica Acta 146 (2): 149-154.         [ Links ]

Williamson, C. E. & J. J. Gilbert. 1980. Variation among zooplankton predators: the potential of Asplanchna, Mesocyclops, and Cyclops to attack, capture, and eat various rotifer prey. In: Kerfoot, W. C. (Ed.). Evolution and ecology of zooplankton communities. University Press of New England. Hanover. pp. 509-517.         [ Links ]

Yoshida, T., S. Ban, T. Takenouchi, T. Aono, Y. Ishikawa, H. Mikami, K. Takano, K. Imada, K. R. Yasotomi & K. Takeuchi. 2000. Top-down control of population dynamics of the dominant rotifers in two mesotrophic lakes in Hokkaido, Japan. Archiv für Hydrobiologie 148 (4): 481-498.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons