SciELO - Scientific Electronic Library Online

 
vol.38 issue1Effect of biocontrol and promotion of peanut growth by inoculating Trichoderma harzianum and Bacillus subtilis under controlled conditions and fieldIsolation, identification and characterization of antagonistic rhizobacteria to Sclerotium cepivorum author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de fitopatología

On-line version ISSN 2007-8080Print version ISSN 0185-3309

Rev. mex. fitopatol vol.38 n.1 Texcoco Jan. 2020  Epub Nov 27, 2020

https://doi.org/10.18781/r.mex.fit.1911-1 

Notas Fitopatológicas

Análisis espacial de antracnosis en el cultivo de aguacate en el Estado de México

Atenas Tapia-Rodríguez1 

José Francisco Ramírez-Dávila1  * 

Dulce Karen Figueroa-Figueroa1 

Martha Lidya Salgado-Siclan1 

Rodolfo Serrato-Cuevas1 

1 Facultad de Ciencias Agrícolas de la Universidad Autónoma del Estado de México. Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, 50200 Toluca de Lerdo, México.


Resumen.

El presente estudio contribuye al conocimiento de la distribución espacial de la antracnosis (Colletotrichum gloeosporioides) en huertos de aguacate en el Estado de México. El estudio se llevó a cabo en los municipios de Coatepec Harinas, Tenancingo, Donato Guerra y Temascaltepec. Se usaron métodos geoestadísticos para determinar la distribución espacial de la antracnosis. Los muestreos se realizaron quincenalmente durante los meses de julio a diciembre del 2018. Seleccionando aleatoriamente 200 árboles por municipio, éstos se georreferenciaron geográficamente utilizando un navegador Trimble modelo eTrex. La distribución espacial de la antracnosis en el cultivo de aguacate mostró diferencias en cada uno de los municipios evaluados, ajustándose a diferentes modelos geoestadísticos (gaussiano, esférico y exponencial), mismos que fueron validados mediante el método de validación cruzada. La distribución espacial de la antracnosis se obtuvo con mapas elaborados a través del krigeado ordinario. Estos mapas revelaron que el municipio de Tenancingo presentó la mayor densidad de antracnosis, respecto a los municipios de Coatepec Harinas, Temascaltepec y Donato Guerra. La distribución espacial de la antracnosis en los cuatro municipios presento agregación y focos de infección localizados. En este estudio se concluye que los métodos geoestadísticos son una alternativa para mejorar los programas de manejo de enfermedades como la antracnosis y ayudan conducir de manera adecuada el control.

Palabras clave: Persea americana; Colletotrichum gloeosporioides; semivariograma

Abstract.

The present study contributes to the knowledge of the spatial distribution of anthracnose (Colletotrichum gloeosporioides) in avocado orchards in the State of Mexico. The study was carried out in the municipalities of Coatepec Harinas, Tenancingo, Donato Guerra and Temascaltepec. Geostatistical methods were used to determine the spatial distribution of anthracnose. Samples were conducted biweekly during the months of July to December 2018. By randomly selecting 200 trees per municipality, they were geographically geo-referenced using a Trimble eTrex model navigator. The spatial distribution of anthracnose in avocado cultivation showed differences in each of the municipalities evaluated, adjusting to different geostatistical models (Gaussian, spherical and exponential), which were validated by the cross-validation method. The spatial distribution of anthracnose was obtained with maps drawn up through ordinary krigeado. These maps revealed that the municipality of Tenancingo had the highest anthracnose density, compared to the municipalities of Coatepec Harinas, Temascaltepec and Donato Guerra. The spatial distribution of anthracnose in the four municipalities presented aggregation and localized sources of infection. This study concludes that geostatistical methods are an alternative to improve disease management programs such as anthracnose and help to adequately conduct control.

Key words: Persea americana; Colletotrichum gloeosporioides; semivariogram

En México, uno de los cultivos agrícolas más importantes económicamente es el aguacate (Persea americana). En los últimos años, el número de hectáreas plantadas de este cultivo ha incrementado de manera considerable (231,028 ha) (SIAP, 2018); la producción de aguacate en el país se concentra principalmente en el estado de Michoacán, siendo reconocido como el mayor productor y exportador a nivel nacional, seguido de los estados Jalisco, Nayarit y el Estado de México, cuya producción de este último se centra particularmente en los municipios de Coatepec Harinas, Temascaltepec, Tenancingo, Villa de Allende, Donato Guerra y recientemente, en el municipio de Ocuilan (SENASICA, 2019).

El aguacate es uno de los productos que México exporta al mundo; cada día, la demanda comercial de este frutal a nivel internacional es mayor, por lo que se busca que la producción sea de calidad; aspectos de manejo y control fitosanitarios se han convertido en una de las principales preocupaciones para el sector productivo aguacatero; plagas y enfermedades que se presentan en los huertos han limitado considerablemente la calidad de los frutos y su comercialización (Orozco et al., 2017). Uno de estos problemas fitosanitarios que limitan la producción de aguacate es la antracnosis, una de las enfermedades que se presenta con mayor frecuencia, sobretodo en poscosecha (Maeda, 2014). Los síntomas de esta enfermedad son causados por especies de hongos fitopatógenos del grupo de los deuteromicetes u hongos imperfectos, principalmente, por las pertenecientes al género Colletotrichum (anamorfo), como C. hymenocallidis y C. siamense, mismas que han sido recientemente reconocidas como causantes de antracnosis en el cultivo de aguacate (Trinidad, 2017), sin embargo, la especie que es considerada altamente patogénica para este cultivo es Colletotrichum gloeosporioides (Rojo-Báez et al., 2017).

Se ha documentado ampliamente a C. gloesosporiodes como una hongo fitopatógeno que permanece en estado de latencia en los huertos de aguacate, esperando condiciones ambientales propicias para su desarrollo y dispersión, tales como humedad relativa arriba del 90% y temperatura por debajo de los 29 ºC (Basulto et al., 2011). Algunos de los síntomas característicos que se presentan en las hojas, flores y frutos suelen ser marchitez de puntas, clavo o viruela, sarampión, entre otros, generando, a su vez, manchas irregulares de tonalidades salmonadas que posteriormente se tornan grisáceas, marrones o negras debido a la presencia de apresorios, acérvulos y conidios (Maeda, 2014).

Kermack y McKendric (1927) son reconocidos en la ciencia por sus aportes significativos a la Epidemiologia, cuyos trabajos llevaron a la comprensión de la dinámica de las enfermedades, desarrollando un sistema de ecuaciones matemáticas cuyo alcance se aplica actualmente en diferentes campos de investigación, entre ellos, la agricultura, donde éstos fundamentos matemáticos permiten conocer, comparar y predecir el comportamiento espacial y temporal de las enfermedades en las plantas (Torres et al., 2010).

Autores como Breilh (2007) hacen referencia a estudios epidemiológicos relacionados con la importancia de la actividad agrícola en los diversos ecosistemas así como sus impactos negativos. Por su parte, Monsalve (2013) hace referencia al hecho de que en la agricultura, es transcendental conocer y controlar la variabilidad espacial que se presenta en la mayoría de los fenómenos observados, por tanto, se hace necesaria la búsqueda de nuevas alternativas de modelización espacial. Es así, que metodologías derivadas de la estadística espacial, propiamente la Geoestadística, han sido ampliamente utilizadas en el análisis de distribuciones de plagas y enfermedades agrícolas, así como su interacción con el ambiente y otras variables abióticas, considerando al espacio geográfico como “un conjunto de sitios ocupados por plantas enfermas, sanas, expuestas o removidas” en donde resulta necesario conocer la dinámica espacial que siguen (Riley et al., 2016). Debido a la importancia del cultivo de aguacate y de la antracnosis para el Estado de México, el objetivo de este trabajo consistió en analizar su distribución espacial en cuatro municipios productores, utilizando herramientas derivadas de la estadística espacial, es decir, Geoestadística.

El estudio se llevó a cabo en Coatepec Harinas, Tenancingo, Donato Guerra y Temascaltepec, considerando 200 árboles de aguacate del cultivar Hass en cada municipio, mismos que fueron seleccionados de manera aleatoria y georreferenciados con un GPS diferencial marca Trimble. Los criterios que se consideraron para la selección de estos árboles incluyeron el rango de edad, el cual osciló entre los cinco y 10 años, además se verificó que el manejo agronómico fuera llevado de manera similar en los cuatro municipios, observando que los dueños de los árboles sólo realizaron control cultural de manera ocasional.

Así mismo, de cada árbol georreferenciado se consideraron 12 ramas, cuatro en cada uno de los estratos de los arboles (alto, medio y bajo), y, a su vez, se seleccionaron 12 frutos con síntomas de antracnosis (cuatro por cada estrato del árbol), mismos donde la incidencia se obtuvo tomando como referencia de cero hasta 12 frutos enfermos por árbol (Ávila et al., 2004)., cabe mencionar que en las parcelas muestreadas se cultiva aguacate únicamente para comercio local y cuyo manejo agronómico es mínimo, controlando las plagas y enfermedades de manera tradicional, como se mencionó anteriormente. Cada muestreo se llevó a cabo cada 14 días durante los meses de julio a diciembre del año 2018, teniendo un total de 48 muestreos (modificado de Rivera et al., 2018).

Para la identificación del agente causal se tomaron muestras de frutos infectados, los cuales fueron llevados al laboratorio de Fitopatología del Centro de Investigación y Estudios Avanzados en Fitomejoramiento de la Facultad de Ciencias Agrícolas de la UAEM para la identificación y observación de Colletotrichum gloeosporioides, mismos que fueron colocados en cámaras húmedas y puestos dentro de una incubadora a 24 °C, después de 7 días las muestras fueron revisadas y se realizaron siembras de tejido enfermo en medio de cultivo papa-dextrosa-agar (PDA), de acuerdo a la metodología empleada por Morales y Ángel (2007), realizando una caracterización morfológica de cepas monoconidiales, las cuales se resembraron nuevamente en PDA y fueron colocadas en una incubadora a 24 °C.

Las características consideradas para la identificación morfológica de las cepas fueron el color, la consistencia y el tipo de crecimiento del micelio; dirección y longitud de las hifas del borde del cultivo; color y forma del cultivo; coloración del centro del cultivo y la presencia de anillos concéntricos; cabe mencionar que este procedimiento se llevó a cabo únicamente con la finalidad de corroborar que se trataba de la especie fúngica reportada en la literatura como el agente causal de la antracnosis para el aguacate en México (Rojo-Báez et al., 2017).

En los muestreos realizados se logró identificar síntomas de antracnosis en árboles de los cuatro municipios, por lo cual es conveniente inferir que ésta enfermedad presenta una amplia distribución; los síntomas encontrados en los árboles variaron desde pequeñas manchas oscuras sobre el pericarpio de los frutos, pasando también por lesiones mayores de colores marrón o café oscuro, en donde se podían apreciar pequeños acérvulos a simple vista, siendo estas las estructuras formadoras de conidios, así mismo, se encontraron lesiones necróticas de mayor tamaño con bordes irregulares y hundidos, coincidiendo en gran parte con lo reportado Morales y Ángel (2007) y por Aquino et al. (2008) quienes mencionan la presencia de lesiones hundidas, negras de forma irregular, con masas de esporas salmonadas (conidios) en los frutos.

Por otro lado, cabe destacar que los síntomas de antracnosis se presentaron en las primeras etapas de desarrollo de los frutos, comprobando lo propuesto por Juárez et al. (2010), quienes afirman que la infección ocurre en etapas tempranas del crecimiento, sin embargo, las lesiones típicas de la enfermedad aparecen hasta que dichos frutos alcanzan la etapa de maduración.

Una vez integradas las bases de datos obtenidos en los muestreos de frutos de aguacate con antracnosis, se llevó a cabo el análisis geoestadístico, comenzando con la estimación de los semivariogramas experimentales a partir de la incidencia obtenida en los muestreos, utilizando el software Variowin 2.2 (Software para el análisis de datos espaciales en 2D. Primavara Verlag, New York; EEUU) (Maldonado et al., 2017). Los semivariogramas experimentales fueron ajustados a modelos teóricos, los cuales suelen ser esféricos, gaussianos, exponenciales, de efecto pepita puro, logarítmicos, monómicos y de efecto agujero, donde los parámetros de meseta, rango y efecto pepita se van modificando hasta obtener estadísticos de validación que sean adecuados y permitan aprobar matemáticamente los modelos ajustados, tales como la Media de los Errores de Estimación (MEE), Error Cuadrático Medio (ECM) y Error Cuadrático Medio Adimensional (ECMA) (Ramírez, 2012; Acosta et al., 2018).

El valor experimental del semivariograma fue calculado con la siguiente expresión (Isaaks y Srivastava, 1989; Journel y Huijbregts, 1978):

γ*(h) = 12N(h) SN(h)i − 1[z(xi+h) z(xi)]2

Donde: γ*(h) es el valor experimental del semivariograma para el intervalo de distancia h; N(h) es el número de pares de puntos muéstrales separados por el intervalo de distancia h; z (xi) es el valor de la variable de interés en el punto muestral xi, y z(xi+h) es valor de la variable de interés en el punto muestra xi+h.

En este trabajo se elaboraron 48 semivariogramas, los cuales, demuestran que la antracnosis en el cultivo de aguacate presentó una distribución espacial de tipo agregado, ajustándose a modelos de tipo gaussiano y exponencial en los cuatro municipios, aunque también se presentaron modelos esféricos en varias fechas de muestreo (Cuadro 1), interpretando de esta forma que la antracnosis presenta un crecimiento acelerado a través del tiempo, y que en algún momento, es posible que permanezca constante y con tendencia a incrementarse en toda la superficie de la zona de estudio. Quiñones et al. (2016) mencionan que los modelos gaussianos permiten explicar la variabilidad y la capacidad de diseminación de las enfermedades, por lo que en este estudio, se explica que la continuidad espacial de antracnosis se explicó con la extensión radial que ocupo, es decir, que la aparición de la enfermedad en un árbol llevó a la infección de los árboles aledaños.

Cuadro 1 Parámetros del semivariograma de los muest reos de Antracnosis de julio a diciembre, 2018.  

Muestreo Media Varianza Modelo Pepita Rango Meseta PEP/Meseta Nivel de dependencia espacial
(%)
Coatepec Harinas
jul-01 6.02 14.47 Esférico 0 20 12.3 0 ALTA
jul-02 6.92 7.2 Gaussiano 0 19.194 6.716 0 ALTA
ago-01 9.67 2.07 Expo. 0 19.2 1.806 0 ALTA
ago-02 9.6 2.67 Expo. 0 28 2.052 0 ALTA
sep-01 6.21 12.27 Gaussiano 0 24 11.44 0 ALTA
sep-02 5.77 11.39 Expo. 0 20.8 9.96 0 ALTA
oct-01 6.26 12.72 Expo. 0 19.2 11.83 0 ALTA
oct-02 6.02 13.45 Gaussiano 0 17.6 11.34 0 ALTA
nov-01 6.15 12.6 Gaussiano 0 19.2 11.6 0 ALTA
nov-02 6.07 10.62 Expo. 0 17.6 9.02 0 ALTA
dic-01 6.11 11.73 Expo. 0 22.4 10.92 0 ALTA
dic-02 6.07 12.37 Expo. 0 19.2 11.57 0 ALTA
Tenancingo
jul-01 8.92 6.87 Gaussiano 0 22 2.553 0 ALTA
jul-02 6.19 12.68 Gaussiano 0 20 8.84 0 ALTA
ago-01 9.75 2.08 Expo. 0 19.2 1.8 0 ALTA
ago-02 6.065 11.15 Expo. 0 30 9 0 ALTA
sep-01 6.19 12.55 Expo. 0 28 10.4 0 ALTA
sep-02 6.04 12.48 Gaussiano 0 22 10.08 0 ALTA
oct-01 6.01 11.1 Gaussiano 0 22 10.08 0 ALTA
oct-02 5.89 12.14 Esférico 0 25.6 10.14 0 ALTA
nov-01 5.56 12.5 Gaussiano 0 17.6 10.92 0 ALTA
nov-02 6.4 13.24 Expo. 0 22.4 11.76 0 ALTA
dic-01 5.55 12.43 Gaussiano 0 19.2 11.44 0 ALTA
dic-02 6.1 11.86 Expo. 0 19.2 10.92 0 ALTA
Donato Guerra
jul-01 6.55 8.14 Expo. 0 27.2 6.63 0 ALTA
jul-02 7.65 7.18 Gaussiano 0 22.5 4.6 0 ALTA
ago-01 9.04 5.008 Gaussiano 0 17.6 4.26 0 ALTA
ago-02 6.05 12.46 Esférico 0 20.8 10.01 0 ALTA
sep-01 5.57 9.94 Expo. 0 22.8 8.3 0 ALTA
sep-02 5.94 11.96 Expo. 0 20.9 9.12 0 ALTA
oct-01 5.86 12.36 Expo. 0 28 11.32 0 ALTA
oct-02 5.89 11.55 Gaussiano 0 17.6 10.8 0 ALTA
nov-01 5.51 11.98 Esférico 0 20.8 10.56 0 ALTA
nov-02 6.02 11.39 Expo. 0 22 8.88 0 ALTA
dic-01 6.49 10.97 Expo. 0 19.2 10.27 0 ALTA
dic-02 5.85 13.51 Esférico 0 22.4 11.6 0 ALTA
Temascaltepec
jul-01 6.37 7.77 Gaussiano 0 20.8 7.33 0 ALTA
jul-02 5.94 12.61 Gaussiano 0 22.8 12.22 0 ALTA
ago-01 9.51 2.77 Expo. 0 26.6 2.24 0 ALTA
ago-02 5.98 12.22 Esférico 0 22.4 10.08 0 ALTA
sep-01 5.83 11.47 Expo. 0 20.8 10.92 0 ALTA
sep-02 6.11 12.52 Gaussiano 0 16 10.14 0 ALTA
oct-01 6.18 11.91 Expo. 0 19.2 9.84 0 ALTA
oct-02 5.85 13.7 Gaussiano 0 17.6 11.62 0 ALTA
nov-01 6.09 11.66 Expo. 0 27.2 10.44 0 ALTA
nov-02 5.89 10.33 Gaussiano 0 19.52 9.54 0 ALTA
dic-01 5.95 12.43 Gaussiano 0 20.8 10.34 0 ALTA
dic-02 6.09 11.04 Gaussiano 0 19.2 10.08 0 ALTA

01) Primer muestreo, 02) Segundo muestreo.

Esta agregación de la enfermedad se hizo más evidente sobre todo durante los meses de agosto, septiembre, noviembre y diciembre, cuando los cambios en la precipitación, temperatura y humedad fueron variables, sin embargo, en los muestreos restantes, la enfermedad permaneció constante en las zonas muestreadas, sobretodo en Coatepec Harinas; lo anterior, permite inferir la existencia de condiciones ambientales favorables (temperatura y humedad idóneas, diferencias fisiográficas que permiten la acumulación de agua de riego o de lluvia, etc.). Así mismo, Fisher et al. (2012), mencionan que las altas incidencias de las enfermedades como la antracnosis están estrechamente relacionadas a la capacidad de resistencia que poseen los fitopatógenos como C. gloeosporioides.

En cuanto a los parámetros ajustados que permitieron validar los modelos es conveniente mencionar la importancia del rango, ya que radica en explicar a qué distancia existe asociación entre los datos muestreados. El efecto pepita, representa el origen del semivariograma, mientras que la meseta es el punto máximo donde existe intersección entre los datos; el nivel de dependencia espacial se obtuvo al dividir el efecto pepita entre la meseta, expresando el resultado en porcentaje (Ramírez, 2012). Es así que los valores de alcance de la enfermedad para los muestreos exponenciales, esféricos y gaussianos presentaron valores desde 19.2 m hasta 28 m (Cuadro 1).

El efecto pepita para todos los modelos ajustados fue igual a cero (Cuadro 1), que de acuerdo con Twizeyimana et al. (2008), puede ser interpretado como un alto nivel de agregación de la incidencia de la enfermedad. En este estudio se generaron mapas a través del krigeado, para estimar los porcentajes de superficie infectada y los valores asociados a puntos no muestreados, de esta manera fue posible visualizar la distribución espacial de la enfermedad para cada municipio y fecha de muestreo. Éstos mapas se obtuvieron con el software Surfer 9 (Surface Mapping System, Golden Software Inc. 809, 14th Street. Golden, Colorado 80401-1866. USA).

Los 48 mapas elaborados muestran claramente puntos o centros de agregación, mismos que se mantuvieron constantes desde el inicio y hasta el final del periodo de muestreo, esto denota que la enfermedad se presenta en esa zonas, y además se mantiene latente y constante, esperando que surjan condiciones favorables que le permitan proliferar. Se asume que esos parches de infección presentes en los mapas, son los principales focos de infección de donde surge la enfermedad y desde donde se distribuye a toda la zona muestreada (Figura 1 A, B, C, D). Con respecto a lo anterior, Cárdenas et al. (2017) mencionan que los semivariogramas y los mapas generados a través del krigeado permiten identificar focos de infección de las enfermedades, y, a su vez, sugieren que la Geoestadística es una herramienta que permite dar explicación al arreglo espacial que siguen las enfermedades en los cultivos, y de esta manera contribuir a la toma de decisiones precisas y oportunas, contribuyendo a la generación de estrategias de manejo integrado.

El porcentaje de superficie infectada más alto en el municipio de Coatepec Harinas fue de 100% en julio, agosto, noviembre y diciembre mientras que para Donato Guerra fue de 100% únicamente para el primer muestreo del mes de noviembre, sin embargo, para el segundo muestreo de ese mismo mes, el porcentaje de infección se redujo un 21% en ese municipio.

En el municipio de Temascaltepec, al igual que en los municipios anteriores, también se presentaron porcentajes de infección de la enfermedad del 100%, en julio, octubre, noviembre y diciembre, el resto de los muestreos, estos porcentajes de infección se mantuvieron por arriba del 90%, a excepción del último muestreo, cuyo valor de infección fue de 86%. Así mismo, en el municipio de Tenancingo, los porcentajes de infección por C. gloeosporioides se mantuvieron entre el 87 y el 100%, encontrando esta totalidad en el segundo muestreo de septiembre y el primero de octubre.

Figura 1. Mapas de incidencia de infección de antracnosis en frutos de aguacate en el Estado de México por municipio A) Coatepec Harinas, B) Donato Guerra, C) Temascaltepec y D) Tenancingo. 

Por lo mencionado anteriormente, en todos los muestreos realizados para los cuatro municipios, el nivel de dependencia espacial fue alto en todos los casos, lo que sugiere que se utilizó una escala de muestreo correcta y el error fue mínimo (Cuadro 1). Esto también se corrobora debido a la alta dependencia espacial que se presentó en todos los muestreos, misma que demostró la correlación existente entre los datos. Por lo que estos resultados coinciden con lo reportado por Quiñones et al. (2016), quienes sugieren que la alta dependencia espacial es un indicador que refiere la relación entre los datos georreferenciados y a la naturaleza de la variable bajo estudio, considerando el tamaño, forma y configuración de las unidades espaciales.

En conclusión, la antracnosis en el aguacate presentó un comportamiento espacial agregado, encontrando centros de agregación claramente definidos, los cuales se mantuvieron constantes durante los seis meses de muestreo en todas las zonas de estudio. La distribución espacial se ajustó a modelos gaussianos, exponenciales y esféricos, permitiendo explicar la dependencia espacial que se presentó de la antracnosis en los cuatro municipios. La Geoestadística ha demostrado ser una de las metodologías empleadas en el sector agrícola que ha sido eficaz en el análisis de las distribuciones espaciales de las enfermedades de los cultivos, facilitando a su vez, la adecuada, pertinente y oportuna toma de decisiones acerca del manejo integrado. Los resultados sugieren realizar aplicaciones preventivas en los puntos iniciales de infección, porque tendría un efecto en el cambio de los patrones espaciales de la enfermedad, así mismo, se propone realizar aplicaciones con fungicidas curativos al inicio de los síntomas y de forma focalizada para evitar la diseminación de la enfermedad al resto del cultivo. Así mismo, este tipo de investigaciones contribuyen ampliamente a minimizar, por una parte, los costos de inversión, y por otro lado, también a disminuir de alguna manera el impacto ambiental que se produce por el uso de agroquímicos en las regiones productoras de aguacate en el Estado de México.

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnología por la beca otorgada para realizar los estudios de Posgrado. A los productores de aguacate del Estado de México por la colaboración para realizar los muestreos. Dedicado para Alfredo Ruiz Orta.

Literatura Citada

Acosta-Guadarrama, AD., Ramírez-Dávila, JF., Rivera-Martínez, R., Figueroa-Figueroa, DK., Lara-Díaz, AV., Maldonado-Zamora, FI. y Tapia-Rodríguez, A. 2017. Distribución Espacial de Trips spp. (Thysanoptera) y Evaluación de su Control Mediante el Depredador Amblyseius swirskii en el Cultivo de Aguacate en México. Southwestern Entomologist, 42: 435-446. https://doi.org/10.3958/059.042.0214 [ Links ]

Aquino, MJG., Vázquez, GLM. y Reyes, RBG. 2008. Biocontrol in vitro e in vivo de Fusarium oxysporum Schlecht. f. sp. dianthi (Prill. y Delacr.) Snyder y Hans. Con hongos antagonistas nativos de la zona florícola de Villa Guerrero, Estado de México. Revista Mexicana de Fitopatología 26:127-137. http://www.scielo.org.mx/pdf/rmfi/v26n2/v26n2a5.pdfLinks ]

Ávila-Quezada, GD., Téliz-Ortiz, D., Mora-Aguilera, G., Vaquera-Huerta, H. y Tijerina-Chávez, L. 2003. Spatial and temporal dynamic of scab (Sphaceloma perseae Jenk.) on avocado (Persea americana Mill.). Revista Mexicana de Fitopatología 21:152-160. https://www.redalyc.org/pdf/612/61221209.pdfLinks ]

Basulto, SF., Díaz, PR., Gutiérrez, AO., Santamaría, FJ. y Larqué, SA. 2011. Control de dos Especies de Colletotrichum causantes de Antracnosis en Frutos de Papaya Maradol. Revista Mexicana de Ciencias Agrícolas. 2(5): 631-643 p. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000500001Links ]

Breilh, J. 2007. Nuevo modelo de acumulación y agroindustria: las implicaciones ecológicas y epidemiológicas de la floricultura en Ecuador. Ciência & Saúde Coletiva 12(1):91-104. http://www.scielo.br/pdf/csc/v12n1/09.pdfLinks ]

Cárdenas, PNJ., Darghan, CAE., Sosa, RMD. y Rodríguez, A. 2017. Análisis espacial de la incidencia de enfermedades en diferentes genotipos de cacao (Theobroma cacao L.) en El Yopal (Casanare), Colombia. Acta Biológica Colombiana 22: 209-220. https://doi.org/10.15446/abc.v22n2.61161 [ Links ]

Fisher, MC., Henk, DA., Briggs, CH., Brownstein, JS., Madoff, L., McCraw, L. and Gurr, S. 2012 Emerging fungal threats to animal, plant and ecosystem health. Nature. 484:7393. https://doi.org/10.1038/nature10947. [ Links ]

Isaaks, E. and Srivastava, M. 1988. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology,20(4): 313-341. https://doi.org/10.1007/BF00892982 [ Links ]

Journel, A. and Huijbregts, CJ. 1978. Mining geostatistics. London, Reino Unido: Academic Press. [ Links ]

Juárez, BGP., Sosa, MME. y López, MA. 2010. Hongos fitopatógenos de alta importancia económica: descripción y métodos de control. Temas selectos de Ingeniería de Alimentos 4:2. 14-23. https://www.udlap.mx/WP/tsia/files/No4-Vol-2/TSIA-4(2)-Juarez-Becerra-et-al-2010.pdfLinks ]

Kermack, W O. y McKendrick, AG. 1927. “Contributions to the Mathematical Theory of Epidemics”. Proceedings of the Royal Society of London. 115:700-721. http://www.jstor.org/stable/94815. [ Links ]

Maeda, CNS. 2014. Anthracnose of papaya in Hawai’i. Mãnoa (US): College of Tropical Agriculture and Human Resources, University of Hawai’i. [ Links ]

Maldonado, FI., Ramírez, JF., Lara, AV., Acosta, DA., Rivera, R. y Rodríguez, TA. 2017. Mapeo de la distribución espacial de trips (Insecta: Thysanoptera) en parcelas comerciales de aguacate Var. Hass en Coatepec Harinas, Estado de México. Ecosistemas 26(2): 52-60. https://doi.org/19.7818/ECOS.2017.26-2.06 [ Links ]

Monsalve, GN. 2013. Modelos jerárquicos bayesianos espaciales en epidemiología agrícola. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19161 [ Links ]

Morales, GJL. y Ángel, PME. 2007. Hongos fitopatógenos de importancia agrícola. Editorial Facultad de Agrobiologia “Presidente Juárez” de la Universidad Michoacana de San Nicolás de Hidalgo. Uruapan, Michoacán, México. 265 p. [ Links ]

Orozco, HME., García, FB., Álvarez, AG. y Mireles, LP. 2017. Tendencias del sector agrícola, Estado de México. Quivera, Revista de Estudios Territoriales 19(1): 99-121. https://www.redalyc.org/pdf/401/40153531006.pdfLinks ]

Quiñones, VR., Sánchez, PJR., Pedraza, EAK,, Castañeda, VA. y Franco, MO. 2016. Distribución espacial de la roya transversal (Uromyces transversalis) del gladiolo durante el ciclo primavera-verano en la región sureste del estado de México. Rev. FCA UNCUYO. 48: 209-220. http://revista.fca.uncu.edu.ar/images/stories/pdfs/201602/Cp15_Snchez_Pale.pdfLinks ]

Ramírez, DJF. 2012. Geoestadística, principios básicos, aplicaciones y limitaciones. Primera edición. Universidad Autónoma del Estado de México. Toluca, México. 135 pp. [ Links ]

Riley, MB., Williamson, MR. and Maloy, O. 2016. Plant disease diagnosis. [ Links ]

Rivera, MR., Ramírez, DJF. y Acosta, GAD. 2018. Distribución espacial de las poblaciones de huevos de Bactericera cockerelli Sulc. en el cultivo de tomate de cáscara (Physalis ixocarpa Brot.). Acta universitaria, 28(5): 24-33. https://doi.org/10.15174/au.2018.1944 [ Links ]

Rojo-Báez, I., Álvarez-Rodríguez, B., García-Estrada, RS., León-Félix, J., Sañudo-Barajas, A. y Allende-Molar, R. 2017. Situación actual de Colletotrichum spp. en México: Taxonomía, caracterización, patogénesis y control. Revista mexicana de fitopatología 35(3): 549-570. http://dx.doi.org/10.18781/r.mex.fit.1703-9 [ Links ]

SENASICA. 2019. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. (Consultado 11-oct-2018). https://www.gob.mx/senasicaLinks ]

SIAP. 2018. Servicio de Información Agroalimentaria y Pesquera. (Consultado 11-1-2018 en http://www.siap.sagarpa.gob.mx/Links ]

Software para el análisis de datos espaciales en 2D. Primavara Verlag, New York; EEUU [ Links ]

Surface Mapping System, Golden Software Inc. 809, 14th Street. Golden, Colorado 80401-1866. USA. [ Links ]

Torres, E., Tovar, J. y Ceballos, LA. 2010. Tres procedimientos de análisis epidemiológico en palma de aceite e incorporación de atributos del paisaje. Revista Palmas, 31(especial): 403-415. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1545 Links ]

Trinidad, AE., Ascencio, VF., Ulloa, J., Ramírez, J,, Ragazzo, SJ., Calderón, SM. y Bautista, RP. 2017. Identificación y caracterización de Colletotrichum spp. causante de antracnosis en aguacate Nayarit, México. Revista Mexicana de Ciencias Agrícolas, 19:3953-3964. https://doi.org/10.29312/remexca.v0i19.664 [ Links ]

Twizeyimana, M., Ojiambo, PS., Sonder, k., Ikotun, T., Hartman, GL. and Bandyopadhyay, R. 2008. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria. Phytopathology 99: 353-361. https://doi.org/10.1094/PHYTO-99-4-0353. [ Links ]

Recibido: 02 de Noviembre de 2019; Aprobado: 02 de Diciembre de 2019

*Autor para correspondencia: jframirezd@uaemex.mx.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons