Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.62 no.2 México mar./abr. 2016
Investigación
Use of self-friction polynomials in standard convention and auxiliary functions for construction of One-Range addition theorems for noninteger slater type orbitals
I.I. Guseinov
Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey.
Received 3 November 2015;
accepted 10 December 2015
Abstract
Using L(Pi*) -self-friction polynomials (L(Pi*)-SFPs), complete orthonormal sets of ψ(Pi*)-SF exponential type orbitals ψ(Pi*)-SFETOs) in standard convention and Qq-integer auxiliary functions (Qq-IAFs) introduced by the author, the combined one- and two-center one-range addition theorems for x-noninteger Slater type orbitals (x-NISTOs) are established, where Pi* = 2l + 2 α* and α* is SF quantum number. As an application, the one-center atomic nuclear attraction integrals of x-NISTOs and V-noninteger Coulombic potential (V-NICPs) are calculated. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids.
Keywords: Addition theorems; standard convention; exponential type orbitals; self-friction quantum number.
PACS: 31.15.-p; 31.10.+z; 31.15.xr; 02.70.-c
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. I.N. Levine, Quantum Chemistry, 5th edn. (Prentice Hall, New York, 2000). [ Links ]
2. R.S. Friedman, P.W. Atkins, Molecular Quantum Mechanics, (Oxford University, Oxford, 2011). [ Links ]
3. I.I. Guseinov, J. Chin. Chem. Soc. 61 (2014) 477. [ Links ]
4. I.I. Guseinov, Bull. Chem. Soc. Jpn. 85 (2012) 1306. [ Links ]
5. B.A. Mamedov, Int. J. Quantum Chem. 114 (2014) 361. [ Links ]
6. I.I. Guseinov, J. Phys. B. 3 (1970) 1399. [ Links ]
7. E U. Condon, G.H. Shortly, The theory of Atomic Spectra, (Cambridge University Press, 1970). [ Links ]
8. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems forthe Special Functions of Mathematical Physics, (New York, Springer, 1966). [ Links ]
9. I.I. Guseinov, J. Math. Chem. 49 (2011) 1011. [ Links ]
10. I.I. Guseinov, Int. J. Quantum, Chem. 86 (2002) 440; Erratum 108 (2008) 202. [ Links ]
11 . H.A. Lorentz, The Theoryof Electrons (Pergamon, New York, 1953). [ Links ]
12 . W. Heitler, The Quantum Theoryof Radiation (Oxford University, Oxford. 1950). [ Links ]
13. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Dover, New York, 1987). [ Links ]