Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.62 no.2 México mar./abr. 2016
Investigación
Fractional drude model of electrons in a metal
M. Guía, J.J. Rosales, L. Martínez, and J.A. Álvarez
División de Ciencias e Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, Salamanca, Guanajuato.
Received 3 August 2015;
accepted 8 December 2015
Abstract
In the present work we analyse the behaviour of electrons in a metal placed into uniform electric field, E, from its fractional differential equation. We show that the velocity and the current density of the electrons not only depend on the time t, but also on the order of the fractional differential equation γ, the Drude model is a particular case. This fact could have interesting consequences in the study of electrical properties of metals.
Keywords: Fractional derivative; drude model; Mittag-Leffler function.
PACS: 45.10.Hj; 45.20.D; 66.70.Df
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This research was partially supported by DAIP-UGTO under the Grant: 629/2015.
References
1. K. Oldham, and J. Spanier, The Fractional Calculus, (Academic Press, New York, 1974). [ Links ]
2. I. Podlubny, Fractional Differential Equations, (Academic Press, New York, 1999). [ Links ]
3. R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000). [ Links ]
4. S.G. Samko, A.A. Kilbas and O.I. Maritchev, Fractional Integrals and Derivatives, Theoryand Applications, (Gordon and Breach Science Publishers, Langhorne, PA, 1993). [ Links ]
5. M. Caputo, and F. Mainardi, Pure and Applied Geophysics 91 (1971) 134-147. [ Links ]
6. S. Westerlund, Causality, report no. 940426, (University of Kalmar, 1994). [ Links ]
7. R.R. Nigmatullin, A.A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, H. Catalgil-Giz, Physica B388 (2007) 418-434. [ Links ]
8. R.L. Magin, O. Abdullah, D. Baleanu, X. Joe Zhou, Journal of Magnetic Resonance 190 (2008) 255-270. [ Links ]
9. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, (Springer, 2013). [ Links ]
10. D. Baleanu, Z.B. Günvenc, and J.A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010). [ Links ]
11. D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, (Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012). [ Links ]
12. K. Diethelm, The Analysis of Fractional Differential Equations, (Springer-Verlag Berlin Heidelber, 2010). [ Links ]
13. Alireza, K. Golmankhaneh, Investigations in Dynamics: With Focus on Fractional Dynamics, (LAP Lambert, Academic Publishing, Germany 2012). [ Links ]
14. Larisse Bolton, Alain H.J.J. Cloot, Schalk W. Schoombie and J.P. Slabbert, Mathematical Medicine and Biology 32 (2015) 187-207. [ Links ]
15. H. Ertik, A.E. Calik, H. Sirin, M. Sen and B. Öder. Rev. Mex. Fis. 61 (2015) 58-63. [ Links ]
16. G.M. Mittag-Leffler, Acta Mathematica 29 (1905) 101-181. [ Links ]
17. H.J. Haubold, A.M. Mathai and R.K. Saxena, J. of Applied Mathematics vol. 2011, doi:10.1155/2011/298628, 1-51. [ Links ]
18. R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin Mittag-Leffler functions: Related topics and applications, (Springer, Berlin (2014)). [ Links ]
19. A. Wiman, Acta Math. 29 (1905) 191-201. [ Links ]
20. M. Dressel and G. Grüner, Electrodynamics of solids: optical properties of electrons in matter, (Cambridge University Press 2002). [ Links ]
21. F. Mainardi, Discrete and Continuos Dynamical Systems, Series B, 19 (2014)2267-2278. [ Links ]
22. F.Y. Alzoubi, M.K. Alqadi, H.M. Al-Khateeb, S.M. Saadeh and N.Y. Ayoub, Jordan Journal of Physics 5 (2012) 129-134. [ Links ]