Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.62 no.2 México mar./abr. 2016
Investigación
Tribological performance evaluation of coated steels with TiNbCN subjected to tribo-chemical wear in Ringer's solution
J. Caballero-Gómeza, J.C. Caicedob and W. Aperadora
a Volta Research Group, Universidad Militar Nueva Granada, Bogotá-Colombia.
b Tribology Polymers, Powder Metallurgy and Processing of Solid Recycled Research Group Universidad del Valle, Cali, Colombia, e-mail: g.ing.materiales@gmail.com
Received 5 May 2015;
accepted 2 December 2015
Abstract
With the aim of generating solutions against the deterioration of the joint prostheses, it was studied the tribo-corrosive behavior of titanium niobium carbonitride (TiNbCN) deposited on stainless steel AISI 316 LVM using the technique of magnetron sputtering physical vapor deposition. The tests were performed in a balanced saline solution (Ringer's solution) which represents the characteristics of the body fluids, using an equipment where the micro-abrasive wear is generated by the contact of micro particles in the system; the micro-abrasion-corrosion mechanism is described by means of the incorporation of an electrochemical cell consisting of three electrodes. Both the substrate and the coating, were subjected to micro-abrasive wear simultaneously with the electrochemical tests of Tafel polarization curves and electrochemical impedance spectroscopy (EIS); subsequently of the tests, the specimens were analyzed by optical microscopy and scanning electron microscopy characterizing the surface morphology. It was observed that the coating presents an increase in its corrosion and wear resistance with the presence of a simulated biological fluid.
Keywords: Micro-abrasion; coating; AISI 316 LVM; wear; corrosion.
PACS: 87.80.Ek; 81.15.-z; 75.20.En; 46.55.+d; 82.45.Bb.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This research was supported by the Universidad Militar Nueva Granada, Bogotá-Colombia project IMP-ING-1767 (2015).
References
1. J.B. Park, Biomaterials Science and Engineering, New York, Plenum Press, (1984) pp. 213. [ Links ]
2. C.M. Agrawal, Reconstructing the Human Body Using Biomaterials, JOM, (1998) 31-35. [ Links ]
3. ASM International, Handbook of Materials for Medical Devices, (2003). [ Links ]
4. D. Dowson, Friction and Wear of Medical Implants and Prosthetic Devices, de Friction, Lubrication, and Wear Technology, Vol ASTM Handbook, ASTM International, 18 1992, pp. 656-664. [ Links ]
5. C.F. Gutiérrez, Nuevos Materiales Cerámica-Niobio Con Aplicaciones Biomédicas, Madrid: Tesis Doctoral, Instituto de Ciencia de Materiales de Madrid, (2009). [ Links ]
6. C. Cácua Ortiz, Colombia desarrolla prótesis biocompatibles para reducir cirugías Octubre (2013), http://www.eltiempo.com/archivo/documento/CMS-13118475 [Online] [ Links ].
7. A.M. Kaufman, C.I. Alabre, H.E. Rusbash and A. S. Shanbhag, Journal of Biomedical Materials Research-Part A 84 (2008) 464-474. [ Links ]
8. W.N. Capello, J.A. D'Antonio, J.R. Feinberg, M.T. Manley and M. Naughton, The Journal of Arthroplasty 23 (2008) 39-43. [ Links ]
9. J. D'Antonio, W. Capello, M. Manley and B. Bierbaum, The Journal of Arthroplasty 17 (2002) 390-397. [ Links ]
10. S.R. Diwanji, J.K. Seon, E.K. Song and R.T. Yoon, Clinical Orthopaedics and Related Research 464 (2007) 242-246. [ Links ]
11. S.A. Masher, J.D. Lipman, L.J. Curley, M. Gilchrist and T.M. Wrigtht, Journal of Arthroplasty 18 (2003) 936-941. [ Links ]
12. A.P. Serro et al., Surface & Coatings Technology 203 (2009) 3701-3707. [ Links ]
13. S. Calderon, J.C. Sánchez-López, A. Cavaleiro and S. Carvalho, Journal of the mechanical behavior of biomedical materials, 41 (2015) 83-91. [ Links ]
14. P.E. Sinnett-Jones, J.A. Wharton and R.J.K. Wood, Wear 259 (2005) 898-909. [ Links ]
15. J. D'Antonio et al., Journal of Arthroplasty 17 (2002) 390-397. [ Links ]
16. J.P. Garino, Bioceramics in Joint Arthoplasty. Review of controlled clinical studies with ceramic on ceramic total hip replacements in the United States of America, ed. H. Zippel and M. Dietrich. 2003, Berlin: Steinkopff Verlag.
17. Wang Li et al., Applied surface science 332 (2015) 1-33. [ Links ]
18. E. Dunstan et al., Journal of Bone and Joint Surgery-American 90A (2008)517-522. [ Links ]
19. H. Pandit, et al., Journal of Bone and Joint Surgery-British 90B (2008) 847-851. [ Links ]
20. J. Esguerra-Arce et al., Rev. Mex. Fis. 60 (2014) 210-216. [ Links ]
21. J.C. Caicedo, W. Aperador, and Y. Aguilara, Rev. Mex. Fis. 59 (2013) 364-373. [ Links ]
22. I. Saravanan, A. Elaya Perumal, S.C. Vettivel, N. Selvakumar, and A. Baradeswaran, Materials and Design 67 (2015) 469-482. [ Links ]
23. J.C. Caicedo et al., Applied Surface Science 256 (2010) 5898-5904. [ Links ]
24. Ming Zhang, Shengli Ma, Kewei Xu, Long Bai and Paul K. Chu, Vacuum 115 (2015) 50-57. [ Links ]
25. A.P. Serro et al., Surface & Coatings Technology 203 (2009) 3701-3707. [ Links ]
26. M.M. Stack et al., Wear 269 (2010)376-382. [ Links ]
27. M.G. Gee et al., Ball Cratering or Micro-Abrasion Wear Testing of Coating, Measurement Good Practice Guide No 57, Teddington, Middlesex, United Kingdom, National Physical Laboratory, (2002). [ Links ]
28. Y.S. Li, K. Wang, P. He, B.X. Huang, P. Kovacs, J. Raman Spectrosc. 30 (1999) 97-103. [ Links ]
29. K. L. Rutherford and I. M. Hutchings, Surface and coatings technology 79 (1996) 236-237. [ Links ]
30. K. L. Rutherford and I. M. Hutchings, Journal of Testing and Evaluation 25 (1997) 250-260. [ Links ]