Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.61 no.2 México mar./abr. 2015
Investigación
Study of dynamical properties in β-TCP/CH layers
A. Minaa, J.C. Caicedoa*, and W. Aperadorb
a Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali-Colombia, * Tel/Fax Number: 57+2+ 3122270 Ext 27 e-mail: jcaicedoangulo1@gmail.com.
b Departament of Engineering, Universidad Militar Nueva Granada, Bogotá-Colombia.
Received 20 August 2014;
accepted 5 February 2015
Abstract
β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function ofincreasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed the root-mean squares hardness of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic-plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that the increase if chitosan percentage is directly related to increasing the hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear the β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage.
Keywords: Surfaces; monolayers; coatings; electrochemical techniques; hardness.
PACS: 68.47.Gh; 75.70.Ak; 68.35.Ct; 82.45.Bb; 62.20.Qp
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This research was supported by the Universidad Militar Nueva Granada, Bogotá-Colombia project IMP-ING-1775 and the Excellence Center for Novel Materials (CENM) at Universidad del Valle in Colombia under Contract RC-043-2005 with Colciencias.
References
1. J.B. Brunski, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons (Eds.), Biomaterials Science an Introduction to Materials in Medicine, 2nd ed., (Elsevier Academic Press, San Diego, 2004) p. 137. [ Links ]
2. B. Karim, J. Jean, D. Mainard, P. Elisabeth, and N. Patrick, Biomaterials 17 (1996) 491. [ Links ]
3. E. Salahinejad et al., PLoS ONE 8 (2013) 1-8. [ Links ]
4. M. Mozafari et al., International Journal of Nanomedicine 8 (2013) 1665-1672. [ Links ]
5. S.M. Naghib, M. Ansari, A, Pedram, F. Moztarzadeh, and A. Feizpour, M. Mozafari, International Journal of Electrochemical Science 7 (2012) 2890-2903. [ Links ]
6. E. Salahinejad et al., Journal of Biomedical Nanotechnology 9 (2013) 1327-35. [ Links ]
7. M.J. Cross, E.N. Parish, and J. Bone, Joint Surg Br 87 (2005) 1073-6. [ Links ]
8. T. Jinno, D.T. Davy, and V.M. Goldberg, J. Arthroplasty. 17 (2002) 902-9. [ Links ]
9. X. Pang, and I. Zhitomirsky, Colloid and Interface Science. 330 (2009) 323-329. [ Links ]
10. D. Peña, H. Estupiñan, H. Cordoba, and C. Vasquez, Rev. Fac. Ing. Univ. Antioquia (54) (2010) 15-23. [ Links ]
11 . Y. Abe, T. Kokubo and T. Yamamuro, Materials Science. Materials in Medicine 1 (1990) 233. [ Links ]
12. L. Pighinelli and M. Kucharska, Journal of Biomaterials and Nanobiotechnology 4 (2013) 20-29. [ Links ]
13. S.-J. Ding, Dental Materials Journal 25 (2006) 706-712. [ Links ]
14. M. Kucharska, A. Niekraszewicz, M. Wisniewska-Wrona, E. Wesolowska and H. Struszczyk, Progresson Chemistry and Application of Chitin and Its Derivatives. 3 (2003) 69-72. [ Links ]
15. G.R. Bamwenda, K. Sayama, and H. Arakawa, J. Photochem. Photobiol., A Chem. 122 (1999) 175. [ Links ]
16. O. Bohnke, C. Bohnke, and G. Robert, Solid State Ion. 6 (1982) 121. [ Links ]
17. D. Davazoglou, A. Donnadieu, and A. Donnadicu, Solar Energy Mat. 71 (1988) 379. [ Links ]
18. E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, M. Mozafari, D. Vashaee, and L. Tayebi, Materials Letters 88 (2012) 5-8. [ Links ]
19. R. Hurdich, Electron Lett. 11 (1975) 142. [ Links ]
20. K.D. Lee, Thin Solid Films 302 (1997) 84. [ Links ]
21. P.M.S. Monk, and L.S. Chester, Electrochim. Acta 38 (1993) 1521. [ Links ]
22. A.I. Inamdar, S.H. Mujawar, V. Ganesan and P.S. Patil, Nanotechnol 19 (2008) 325706. [ Links ]
23. E.M. Castro, H A. Estupiñan, and D.Y. Peña, Scientia et Technica 13 (2007) 36. [ Links ]
24. D.S. Metsger, M.R. Rieger, and D.W. Foreman, J. Mater Sci Mater Med 10 (1999) 9-17. [ Links ]
25. X. Guo, L. Lee, L.P. Law, H. Chow, R. Rosier, and C. Cheng, J. Orthop. Res 20 (2002) 740-746. [ Links ]
26. S.S. Banerjee, S. Tarafder, N.M. Davies, A. Bandyopadhyay, and S. Bose, Acta Biomaterialia. 6 (2010) 4167-4174. [ Links ]
27. E.T. den Braber, J.E. de Ruijter, and L.A. Ginsel, Biomaterials 17 (1996) 2037-2044. [ Links ]
28. M. Zhang, X.H. Li, Y.D. Gong, N.M. Zhao, and X.F. Zhang, Biomaterials. 23 (2002) 2641-2648. [ Links ]
29. R. Martínez H. Estupiñan, D. Peña, and P. Mohan, Scientia et Technica. 36 (2007) 36. [ Links ]
30. W.C. Oliver and G.M. Pharr, Journal of Materials Research 7-6 (1992) 1564-1583. [ Links ]
31. W. Jiawei, Journal of Biomedical materials Research. Part. A. 76 (2006) 503-511. [ Links ]
32. A. Tejada, C. Pina, S. Martínez, and G. Ávila, Rev. Mex. Fis. 5 (2004) 187-192. [ Links ]
33. G. Tomoaia, A. Mocanu, I. Vida-Simiti, N. Jumate, L. Dorel Bobos, and O. Soritau, M. Tomoaia-Cotisel, Materials Science and Engineering: C, 37 (2014) 37-47. [ Links ]
34. G.S. Kim, S.Y. Lee, and J.H. Hahn, Surf. Coat. Technol. 171 (2003) 91-95. [ Links ]
35. J. Zhang, W. Liu, V. Schnitzler, F. Tancret, and J. Bouler, Acta Biomaterialia. 10 (2014) 1035-1049. [ Links ]
36. G. Cabrera, J.C. Caicedo, C. Amaya, L. Yate, J. Muñoz Saldana, and P. Prieto, Materials Chemistry and Physics. 125 (2011) 576-586. [ Links ]
37. V.V. Hajek, K. Rusnak, J. Vlcek, L. Martinu and H.M. Hawthorne, Wear 213 (1997) 80-86. [ Links ]
38. J.C. Caicedo et al., Applied Surface Science. 256 (2010) 5898-5904. [ Links ]
39. G.S. Kim, S.Y. Lee, and J.H. Hahn, Surface and Coatings Technology. 171 (2002) 91-95. [ Links ]
40. P.J. Burnett and D.S. Rickerby, Thin Solid Films. 154 (1987) 403-416. [ Links ]
41. J.C. Caicedo, G. Bejarano, M.E. Gómez, P. Prieto, C. Cortez, and J. Munoz, Phys. Stat. Sol. 4 (2007) 4127-4133. [ Links ]
42. J. Romero, A. Lousa, J. Esteve, and E. Martínez, Applied Physics A: Materials Science & Processing. 77 (2003) 419-427. [ Links ]
43. J.F. Archard. Journal of Applied Physics. 24 (1953) 981. [ Links ]
44. P. Nledengvist and S. Hogmark, Tribology International. 30 (1997) 507-516. [ Links ]
45. L. Ipaz, J.C. Caicedo, J. Esteve, F.J. Espinoza-Beltran, and G. Zambrano, Applied Surface Science 258 (2012) 3805- 3814. [ Links ]
46. S.J. Bull, D.S. Rickerby, A. Matthews, A. Leyland, A.R. Pace, and J. Valli, Surf. Coat. Technol. 36 (1988) 503-517. [ Links ]
47. J.M Lackner, L. Major, and M. Kot, Bull. Pol. Ac.: Tech. 59 (2011) 343-355. [ Links ]