Serviços Personalizados
Journal
Artigo
Indicadores
-
Citado por SciELO
-
Acessos
Links relacionados
-
Similares em SciELO
Compartilhar
Revista mexicana de física
versão impressa ISSN 0035-001X
Rev. mex. fis. vol.60 no.5 México Set./Out. 2014
Investigación
Changes of representation and general boundary conditions for Dirac operators in 1+1 dimensions
S. De Vincenzo
Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47145, Caracas 1041-A, Venezuela. e-mail: salvatore.devincenzo@ucv.ve
Received 30 May 2014;
Accepted 19 August 2014.
Abstract
We introduce a family of four Dirac operators in 1+1 dimensions: ĥA = -iħc^ΓA ∂/∂x (A = 1, 2, 3,4) for x ∉ Ω = [α, b]. Here, {^ΓA} is a complete set of 2 x 2 matrices: ^Γ1 = ^1, ^Γ2 = ^α, ^Γ3 = ^β, and ^Γ4 = i^β^α, where ^α and ^β are the usual Dirac matrices. We show that the hermiticity of each of the operators ĥA implies that CA (x = b) = CA (x = α), where the real-valued quantities CA = cψ†^ΓAψ, the bilinear densities, are precisely the components of a Clifford number Ĉ in the basis of the matrices ^ΓA; moreover, Ĉ/2cρ is a density matrix (ρ is the probability density). Because we know the most general family of self-adjoint boundary conditions for ĥ2 in the Weyl representation (and also for ĥ1), we can obtain similar families for ĥ3 and ĥ4 in the Weyl representation using only the aforementioned family for ĥ2 and changes of representation among the Dirac matrices. Using these results, we also determine families of general boundary conditions for all these operators in the standard representation. We also find and discuss connections between boundary conditions for the free (self-adjoint) Dirac Hamiltonian in the standard representation and boundary conditions for the free Dirac Hamiltonian in the Foldy-Wouthuysen representation.
Keywords: Dirac operators; bilinear densities; changes of representation; boundary conditions; Foldy-Wouthuysen representation
PACS: 03.65.-w, 03.65.Ca, 03.65.Pm
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. B. Thaller, Advanced Visual Quantum Mechanics (New York: Springer 2005) p. 325. [ Links ]
2. W. Greiner, Relativistic Quantum Mechanics 3rd Edition (Berlin Heidelberg: Springer-Verlag 2000). [ Links ]
3. V. Alonso, S. De Vincenzo, and L. Mondino, Found. Phys. 29 (1999) 231-50. [ Links ]
4. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (Reading, MA: Addison-Wesley 1977) p. 300. [ Links ]
5. B. Thaller, The Dirac Equation (New York: Springer 1992). p. 36. [ Links ]
6. S. De Vincenzo, Operators and bilinear densities in the Dirac formal 1D Ehrenfest theorem. (Submitted for publication 2014). [ Links ]
7. W. Bulla, P. Falkensteiner, and H. Grosse, Phys. Lett. B 215 (1988)359-63. [ Links ]
8. V. Alonso and S. De Vincenzo, J. Phys. A: Math. Gen. 32 (1999) 5277-84. [ Links ]
9. P. Falkensteiner and H. Grosse, J. Math. Phys. 28 (1987) 85054. [ Links ]
10. V. Alonso and S. De Vincenzo, J. Phys. A: Math. Gen. 30 (1997) 8573-85. [ Links ]
11. S. M. Roy and V. Singh, Phys. Lett. 143B (1984) 179-82. [ Links ]
12. P. Holland and H. R. Brown, Studies in History and Philosophy of Modern Physics 34 (2003) 161-87. [ Links ]
13. Z. Brzezniak and B. Jefferies, J Phys. A: Math. Gen. 34 (2001) 2977-83. [ Links ]
14. V. Alonso S. De Vincenzo and L. Mondino, Eur. J. Phys. 18 (1997)315-320. [ Links ]
15. V Alonso and S. De Vincenzo, Int. J. Theor. Phys. 39 (2000) 1483-98. [ Links ]
16. J. P. Costella and B. H. J. McKellar, Am. J. Phys. 63 (1995) 1119-21. [ Links ]
17. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78 (1950) 29-36. [ Links ]
18. D. Atkinson and P. W. Johnson, Exercises in Quantum Field Theory Vol 4 (Princeton: Rinton Press 2003) p. 62. [ Links ]
19. A. J. Silenko, Phys. Part. Nucl. Lett. 5 (2008) 501-5. [ Links ]
20. V P. Neznamov and A. J. Silenko, J. Math. Phys. 50 (2009) 122302. [ Links ]