Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.60 no.3 México may./jun. 2014
Research
Adherence and electrochemical behavior of calcium titanate coatings onto 304 stainless steel substrate
J. Esguerra-Arcea, Y. Aguilarb, W. Aperadorc, N. Alba de Sánchezd, G. Bolaños Pantojae, C. Rincónf
a TPMR, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 # 100-00, A.A. 25360, Cali, Colombia, Tel: +57 2 3244893 e-mail: johanna.esguerra@univalle.edu.co
b TPMR, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 # 100-00, A.A. 25360, Cali, Colombia.
c Escuela de Ingeniería Mecánica, Escuela Colombiana de Ingeniería Julio Garavito, AK 45 # 205-59 (Autopista Norte), A.A 14520, Bogotá, Colombia.
d Grupo de Investigación en Ciencia e Ingeniería de Materiales, Corporación Universidad Autónoma de Occidente, Calle 25 # 115-85, A.A 2790, Cali, Colombia.
e Laboratorio de Física de Bajas Temperaturas, Departamento de Física, Universidad del Cauca, Calle 5 # 4-70, A.A 996, Popayán, Colombia.
f Laboratorio de Física de Bajas Temperaturas, Departamento de Física, Universidad del Cauca, Calle 5 # 4-70, A.A 996, Popayán, Colombia.
Received 27 August 2013
accepted 21 March 2014
Abstract
Calcium titanate has been proposed as a coating for biomedical applications but it has not been reported characterization of adhesion failure mechanisms or electrochemical properties in time. In this work have been studied these properties of a calcium titanate coating growth onto AISI 304 steel deposited by r.f. magnetron sputtering. It was found that the coating has a critical adhesive load of 6.53 ± 0.14 N. With respect to its electrochemical properties potentiodynamic polarization curves show that the calcium titanate coating provides protection to AISI 304 steel. However, EIS indicates that even though metal dissolution occur through the pores in the coating, this leads to the precipitation of salts that block pores; this precipitates layer acts like an additional barrier to the metal dissolution in the system.
Keywords: Biomaterials; calcium titanate coating; magnetron sputtering; scratch test; corrosion.
PACS: 68.60.Bs; 68.35.Np; 82.45.Bb
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. J. D. Bronzino, The Biomedical Engineering Handbook: Biomedical Engineering Fundamentals, Medical Devices and Systems Tissue Engineering and Artificial Organs (Tercera edición, Taylor and Francis Group, 2006). [ Links ]
2. ASTM F75 - 07. Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075), (West Conshohocken, PA, American Society for Testing and Materials, 2007). [ Links ]
3. T.M Wright and S. B. Goodman, Rosemont, (IL: American Academy of Orthopaedic Surgeons. 1996). 41. [ Links ]
4. M. Lundin et al., J. Colloid Interface Sci. 366 (2012) 155. [ Links ]
5. F.L. Nie, S.G. Wang, Y.B. Wang, S.C. Wei, and Y.F. Zheng, Dental materials 27 (2011) 677. [ Links ]
6. F. Barragan, R. Guardian, C. Menchaca, I. Rosales, and J. Uruchurtu, Int. J. Electrochem. Sci. 5 (2010) 1799. [ Links ]
7. Y. C. T Tang, S. Katsuma, S. Fujimoto, and S. Hiromoto, Acta Biomaterialia 2 (2006) 709. [ Links ]
8. ASTM F138 - 08: Standard Specification for Wrought 18Chromium-14Nickel-2.5MolybdenumStainlessSteelBarand Wire for Surgical Implants (UNS S31673), (West Conshohocken, PA, American Society for Testing and Materials, 2008). [ Links ]
9. ASTM F139 - 08: Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Sheet and Strip for Surgical Implants (UNS S31673),( West Conshohocken, PA, American Society for Testing and Materials, 2008). [ Links ]
10. J. Faig-Martí and F.J. Gil-Mur, Rev. esp. cir. ortop. traumatol 52 (2008) 113. [ Links ]
11. M. Rokkum, J. Arthroplasty. 14 (1999) 689. [ Links ]
12. A. E. Porter, P. Taak, L. W. Hobbs, M. J. Coathup, G. W. Blunn, and M. Spector, Biomaterials 25 (2004) 5199. [ Links ]
13. M. J. Coathup, G. W. Blunn, N. Flynn, C. Williams, and N. P. Thomas, J. Bone Joint Surg. [Br], 82-B (2000) 118. [ Links ]
14. C. Ergun, R. Doremus, and W. Lanford, J. Biomed. Materi. Res. A 65 (2003) 336. [ Links ]
15. T. Kokubo, H.M. Kim, and M. Kawashita, Biomaterials 24 (2003) 2161. [ Links ]
16. S. Holliday and A. Stanishevsky, Surf. Coat. Technol. 188 (2004) 741. [ Links ]
17. K. Asami, N. Ohtsu, K. Saito, and T. Hanawa, Surf. Coat. Technol. 200 (2005) 1005. [ Links ]
18. N. Ohtsu, K. Saito, K. Asami, and T. Hanawa, Surf. Coat. Technol. 200 (2006) 5455. [ Links ]
19. N. Ohtsu, A. Ito, K. Saito, and T. Hanawa, Surf. Coat. Technol. 201 (2007) 7686. [ Links ]
20. J.P. Wiff, V.M. Fuenzalida, J.L. Arias, and M.S. Fernandez, Mater. Lett. 61 (2007) 2739. [ Links ]
21. N. Ohtsu, C. Abe, T. Ashino, S. Semboshi, and K. Wagatsuma, Surf. Coat. Technol. 202 (2008) 5110. [ Links ]
22. J.W. Park et al, Appl. Surf. Sci. 257 (2011) 7856. [ Links ]
23. B. Ben-Nissan, B. A. Latella, and A. Bendavid, Comprehensive Biomaterials 3 (2011) 63. [ Links ]
24. A. Sargeant, and T. Goswami, Mater. Design 28 (2007) 155. [ Links ]
25. N. J. Hallab, S. Anderson, T. Stafford, T. Glant, and J. J. Jacobs, J. Orthopaed. Res. 23 (2005) 384. [ Links ]
26. ASTM C1624 - 05 (Reapproved 2010): Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, West Conshohocken, PA, (American Society for Testing and Materials, 2005). [ Links ]
27. ASTM G3 - 89 (Reapproved 2010): Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, West Conshohocken, (PA, American Society for Testing and Materials, 2010). [ Links ]
28. ASTM G59 - 97 (Reapproved 2009): Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, West Conshohocken, (PA, American Society for Testing and Materials, 2009). [ Links ]
29. A.V. Arakcheeva, D.Y. Pusharovskii, V.M. Gekimyants, V.A. Popov, and G.U. Lubman, Kristallografiya 42 (1997) 54. [ Links ]
30. R. Ali and M. Yashim, J. Solid State Chem. 178 (2005) 2867. [ Links ]
31. X. Liu, R.C. Liebermann, Phys. Chem. Miner. 20 (1993) 171. [ Links ]
32. H. Fuess, Fachbereich Materialwissenschaft, Technische Hochschule Darmstadt, Germany (Private Communication, 1991) [ Links ]
33. V.I. Khitrova, M.F. Bundule, and Z.G. Pinsker, Kristallografiya 22 (1977) 1253. [ Links ]
34. W. Z. Gerlach, Phys. 9 (1922) 184. [ Links ]
35. R.D.K. Misra, C. Nune, T.C. Pesacreta, M.C. Somani, and L.P. Karjalainen, Acta Biomater. 9 (2013) 6245. [ Links ]
36. K. Suzuki, K. Aoki, and K. Ohya, Bone 21 (1997) 507. [ Links ]
37. V. Nelea, C. Morosanu, M. Iliescu, and I.N. Mihailescu, Surf. Coat. Technol. 173 (2003) 315. [ Links ]
38. K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, and S. Varjus, Wear 254 (2003)278. [ Links ]
39. J.A. Toque, M. K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, and I. Sopyan, J. Mech. Behav. Biomed. 3 (2010) 324. [ Links ]
40. H. Tang and F. Wang, Mater. Lett. 93 (2013) 427. [ Links ]
41. G. W. Walter, Corros. Sci. 26 (1986) 681. [ Links ]
42. M. Metikosš-Huković, E. Tkalčec, A. Kwokal, and J. Piljac, Surf. Coat. Tech. 165 (2003) 40. [ Links ]
43. V.A. Alves, Corros. Sci. 51 (2009) 2473. [ Links ]
44. B. A. Boukamp, Solid State Ionics 18-19 (1986) 136. [ Links ]
45. R. M. Souto, M. M. Laz, and R. L. Reis, Biomaterials 24 (2003) 4213. [ Links ]