SciELO - Scientific Electronic Library Online

vol.56 número4Finite-time exergy with a finite heat reservoir and generalized radiative heat transfer lawHeating load, COP, exergy loss rate, exergy output rate and ecological optimizations for a class of generalized irreversible universal heat pump cycles índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.4 México ago. 2010




Formation and characterization of ion beam assisted nanosystems in silicon


P.R. Poudelª, B. Routª, K.M. Hossainª, M.S. Dhoubhadelª, V.C. Kummariª, A. Neogib, and F.D. McDanielª,*


ª Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, 1155 Union Circle#311427, Denton, Texas 76203, USA. *Phone: 940–565–3251; fax: 940–565–2227. E–mail:

b Ultrafast Spectroscopy and Nanophotonics Laboratory, Department of Physics, University of North Texas, 1155 Union Circle#311427, Denton, Texas 76203, USA.


Recibido el 28 de enero de 2010
Aceptado el 21 de mayo de 2010



Even though silicon is optically inactive, the nanoscale particle structures (e.g. SiC) in Si or silica matrices are potential candidates for light emitting solid state device applications with higher operation temperatures. The synthesis of these nanostructures involves ion implantation and subsequent thermal annealing. The film thicknesses and sizes of the nanostructures can be controlled by ion energy, fluence, and annealing conditions. Particle accelerator based characterization was used at different stages of formation and analysis of these nanosystems in Si. Results will be presented using infrared spectroscopy (IR), X–ray diffraction spectroscopy (XRD), and photoluminescence (PL) spectroscopy.

Keywords: SiC; nanosystems; ion implantation; photoluminescence.



Aunque el silicio es ópticamente inactivo, las estructuras de las partículas a nanoescala (por ejemplo, carburo de silicio) en Si o en la matriz de sílice son candidatos potenciales para aplicaciones de dispositivos emisores de luz de estado sólido con temperaturas de operación mayores. La síntesis de estas nanoestructuras implica la implantación de iones y de recocido térmico posterior. Los espesores de película y tamaños de las nanoestructuras pueden ser controladas por la energía de iones, flujo de energía y las condiciones de recocido. Una caracterizacion basada en un acelerador de partículas se utilizó en las diferentes etapas de la formación y el analísis de estos nanosistemas en Si. Los resultados se presentarán mediante espectroscopía de infrarrojos (IR), X–espectroscopía de difracción de rayos X (DRX), y espectroscopía de fotoluminiscencia (PL).

Descriptores: SiC; nanosistemas; la implantación de iones; fotoluminiscencia.


PACS: 85.60.–q; 85.30.–z; 68.55.Ln





The Work at UNT is supported in part by the National Science Foundation and the Robert A. Welch Foundation.



1. S.Godefroo et al., Nature Nanotechnology 3 (2008) 174.         [ Links ]

2. L.T. Canham, Appl. Phys. Lett. 57 (1990) 1046.         [ Links ]

3. V. Lehmannand and U. Gosele, Appl. Phys. Lett. 58 (1991) 856.         [ Links ]

4. L. Brus, J. Phys. Chem. 98 (1994) 3575.         [ Links ]

5. A.G. Cullis, L.T. Canham, and P.D.J. Calott, J. Appl. Phys. 82 (1997) 909.         [ Links ]

6. M. Righini, A. Gnoli, L. Razzari, Ugur Serincan, and Rasit Turan, J. of Nonoscience and Nanotechnology 8 (2008) 823.         [ Links ]

7. Dihu Chen et al., Optical Materials 23 (2003) 65.         [ Links ]

8. Y.S. Katharria, F. Singh, P. Kumar, and D. Kanjilal, Nucl. Instrum. Methods B 254 (2007) 78.         [ Links ]

9. J.C. Zolper and M. Skowronski, MRS Bull 30 (2005) 273.         [ Links ]

10. M.M. Rodriguez et al., J.Mater Sci: Mater. Electron 19 (2008) 682.         [ Links ]

11. T.V. Torchynska et al.,Microelectronics 36 (2005) 536.         [ Links ]

12. L.S. Liao, X.M. Bao, Z.F. Yang, and N.B. Min, Appl. Phys. Lett. 66 (1995) 2382.         [ Links ]

13. Z.G. Wang et al., Nucl. Instrum. Methods B 191 (2002) 396.         [ Links ]

14. D. Korobkin, Y. Urzhumov, and G. Shvets, J. Opt. Soc. Am. B 23 (2006) 468.         [ Links ]

15. A.P. Alivisatos, MRS Bulletin 20 (1995) 23.         [ Links ]

16. J.O. Orwa, J.C. McCallum, S. Prawer, K.W. Nugent, and D.N. Jamieson, Diamond and Related Materials 8 (1999) 1642.         [ Links ]

17. N.N. Ledentsov et al., Solid–State Electronics 40 (1996) 785.         [ Links ]

18. O.I. Micic et al., J. Phys. Chem. B 101 (1997) 4904.         [ Links ]

19. L.J. Mitchell, F. Naab, O.W. Holland, J.L. Duggan, and F.D. McDaniel, J. of Non–Crystalline Solids 352 (2006) 2562.         [ Links ]

20. E. Rimini, Ion Implantation: Basic to Device Fabrication (Kluwer Academic, Dordrecht, 1995) p. 19.         [ Links ]

21. Y. Maeda, K. Umezawa, Y. Hayashi, K. Miyake, and K. Ohashi, Thin Solid Films 381 (2001) 256.         [ Links ]

22. R. Middleton, A Negative Ion Cookbook, HTML Version: M. Wiplich (October 1989)        [ Links ]

23. J.P. Biersack and L.G. Haggmark, Nucl. Inst. and Meth. 174 (1980) 257, recently updated, the package and its documentation are available at         [ Links ]

24. J.A. Borders, S.T. Picraux, and W. Beezhold, Appl. Phys. Lett. 18 (1971) 509.         [ Links ]

25. Z. An et al., J. Vac. Sci. Technol. B 21 (2003) 1375.         [ Links ]

26. R. Walker, S. Prawer, D.N. Jamieson, and K.W. Nugent, Diamond and Related Materials 8 (1999) 2159.         [ Links ]

27. D.S. Knight and W.B. White, J. Mater. Res. 4 (1989) 385.         [ Links ]

28. Y.H. Yu, S.P. Wong, and I.H. Wilson, Physica Status Solidi (a) 168 (1998) 531.         [ Links ]

29. S. Hayashi, M. Kataoka, and K. Yamamoto, Jpn. J. appl. Phys. 32 (1993) 274.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons