SciELO - Scientific Electronic Library Online

 
vol.55 número3Reduced order ocean model using proper orthogonal decompositionManejo e interpretación polarimétrica de las matrices de Mueller índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.55 no.3 México jun. 2009

 

Investigación

 

Exergoeconomic performance optimization for an endoreversible regenerative gas turbine closed–cycle cogeneration plant

 

Guisheng Tao, Lingen Chen*, and Fengrui Sun

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China.

 

*To whom all correspondence should be addressed.
Fax: 0086–27–83638709
Tel: 0086–27–83615046

e–mail: lgchenna@yahoo.com, lingenchen@hotmail.com

 

Recibido el 9 de febrero de 2009
Aceptado el 13 de mayo de 2009

 

Abstract

Finite time exergoeconomic performance of an endoreversible regenerative gas turbine closed–cycle cogeneration plant coupled to constant temperature heat reservoirs is investigated. The analytical formulae about profit rate and exergy efficiency of the cogeneration plant with the heat resistance losses in the hot–, cold– and consumer–side heat exchangers and the regenerator are deduced, respectively. By means of numerical calculations, the heat conductance allocation among the four heat exchangers and pressure ratio of the compressor are optimized by taking the maximum profit rate as the objective. The characteristic of optimal dimensionless profit rate versus corresponding exergy efficiency is investigated and the effects of design parameters on optimal performance of the cogeneration plant are also analyzed. The results show that there exist a sole group of optimal heat conductance allocations among the four heat exchangers and an optimal pressure ratio of the compressor which lead to the maximum dimensionless profit rate, and there exists an optimal consumer–side temperature which leads to double–maximum dimensionless profit rate.

Keywords: Finite time thermodynamics; gas turbine cycle cogeneration plant; exergoeconomic performance; profit rate.

 

Resumen

Se investigó el desempeño en tiempo finito de una planta de cogeneración de gas turbina endoreversible regenerativo de ciclo cerrado acoplado con una reserva de temperatura termal constante. Se deduce la formula analítica para la razon de ganancia y eficiencia de energía de la planta de cogeneración con las perdidas de resistencia en calor, frío y lado–consumidor intercambiadores termales y regeneradores, respectivamente. Mediante cálculos numéricos, la asignación de conductor termal entre los cuatro intercambiadores termales y de taza de presión del compresor es optimizada tomando como objetivo la máxima taza de ganancia. Se investiga las características de las dimensiones óptimas de taza de ganancia versus la energía eficiencia correspondiente, así como los efectos de los parámetros sobre el desempeño óptimo de la planta de cogeneración. Los resultados demuestran que existe un solo grupo de óptimo de conductores termales entre los cuatro intercambiadores y una de taza de presión del compresor optima que resultan en las dimensiones máximas de la taza de ganancia, y que existe una temperatura optima de lado–consumidor que resulta con una taza de ganancia de dimensiones doble–máxima.

Descriptores: Termodinámica de tiempo finito; desempeño exorgoeconómico.

 

PACS: 05.70.–a; 84.60.–h

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This paper is supported by The Program for New Century Excellent Talents of P.R. China (Project No. NCET–04–1006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (Project No. 200136). The authors wish to thank the reviewer for his careful, unbiased and constructive suggestions, which led to this revised manuscript.

 

A Nomenclature

 

B Greek symbols

 

Subscripts

 

References

1. M.A. Habib, Energy 17 (1992) 485.        [ Links ]

2. B. Andresen, R.S. Berry, M.J. Ondrechen, and P. Salamon, Acc. Chem.Res. 17 (1984)266.        [ Links ]

3. D.C. Agrawual and V.J. Menon, J. Appl. Phys. 74 (1993) 2153.        [ Links ]

4. A. Bejan, J. Appl. Phys. 79 (1996) 1191.        [ Links ]

5. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, and A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Chichester: Wiley, 1999).        [ Links ]

6. L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn. 24 (1999)327.        [ Links ]

7. D. Ladino–Luna, Rev. Mex. Fis. 48 (2002) 575.        [ Links ]

8. A. Durmayaz, O.S. Sogut, B. Sahin, and H. Yavuz, Progress Energy & Combustion Science 30 (2004) 175.        [ Links ]

9. G. Aragon–Gonzalez, A. Canales–Palma, A. Lenon–Galicia, and M. Musharrafie–Martínez, Rev. Mex. Fis. 51 (2005) 32.        [ Links ]

10. L. Chen, Finite–Time Thermodynamic Analysis of Irreversible Processes and Cycles (Higher Education Press, Beijing, 2005).        [ Links ]

11. C.A. Herrera, M.E. Rosillo, and L. Castano Rev. Mex. Fis. 54 (2008)118.        [ Links ]

12. G. Aragon–Gonzalez, A. Canales–Palma, A. León–Galicia, and J.R. Morales–Gomez, Brazilian J. Physics 38 (2008) 1.        [ Links ]

13. M. Feidt, Int. J. Exergy 5 (2008) 500.        [ Links ]

14. M. Bojic, Energy. Convers. Mgmt. 38 (1997) 1877.        [ Links ]

15. B. Sahin, A. Kodal, I. Ekmekci, and T. Yilmaz, Energy 22 (1997) 1219.        [ Links ]

16. A. Erdil, J. Energy Institute 75 (2005) 27.        [ Links ]

17. T. Yilmaz, J. Phys. D: Appl. Phys 39 (2006) 2454.        [ Links ]

18. X. Hao and G. Zhang, Appl. Energy 84 (2007) 1092.        [ Links ]

19. Y. Ust, B. Sahin, and T. Yilmaz Proc. IMechE, Part A, Power & Energy 221 (2007) 447.        [ Links ]

20. Y. Ust, B. Sahin, and A. Kodal, Appl. Energy 84 (2007) 1079.        [ Links ]

21. G. Tsatsaronts, Progress in Energy and Combustion Science 19 (1993)227.        [ Links ]

22. M. El–Sayed, The Thermoeconomics of Energy Conversion (London: Elsevier, 2003).        [ Links ]

23. P. Salamon and A. Nitzan, J. Chem. Phys. 74 (1981) 3546.        [ Links ]

24. L. Chen, F. Sun, and W. Chen, J. Engng. Thermal Energy Pow. 6 (1991) 237 (in Chinese).        [ Links ]

25. F. Sun, L. Chen, W. Chen, Trans. Chinese Soc. Internal Combustion Engines 9 (1991) 286 (in Chinese).        [ Links ]

26. L. Chen, F. Sun, and C. Wu, Int. J. Ambient Energy 18 (1997) 216.        [ Links ]

27. C. Wu, L. Chen, and F. Sun, Energy, The Int. J. 21 (1996) 1127.        [ Links ]

28. L. Chen, F. Sun, and W. Chen, Chinese Sci. Bull. 36 (1991) 156 (in Chinese).        [ Links ]

29. L. Chen, C. Wu, and F. Sun, Exergy, An Int. J. 1 (2001) 295.        [ Links ]

30. C. Wu, L. Chen, and F. Sun, Energy Convers. Mgnt. 39 (1998) 579.        [ Links ]

31. F. Wu, L. Chen, F. Sun, and C. Wu, Int. J. Engineering Science 38 (2000) 239.        [ Links ]

32. L. Chen, F. Sun, and C. Wu, Appl. Energy 79 (2004) 15.        [ Links ]

33. L. Chen, Z. Zheng, F. Sun, and C. Wu, Int. J. Ambient Energy 29 (2008) 197.        [ Links ]

34. Z. Zheng, L. Chen, F. Sun, and C. Wu, Int. J. Ambient Energy 27 (2006) 29.        [ Links ]

35. L. Chen, C. Wu, and F. Sun, Int. J. Energy Environment Economics 4 (1996) 1.        [ Links ]

36. L. Chen, C. Wu, and F. Sun, Int. J. Energy Res. 23 (1999) 773.        [ Links ]

37. O.M. Ibrahim, S.A. Klein, and J.W. Mitchell, ASME Trans. J. Sol. Energy Engng. 114 (1992) 267.        [ Links ]

38. A. De Vos, Energy Convers. Mgmt. 36 (1995) 1.        [ Links ]

39. A. Bejan, ASME Trans. J. Energy Res. Tech. 115 (1993) 148.        [ Links ]

40. B. Sahin and A. Kodal, Energy Convers. Mgmt. 42 (2001) 1085.        [ Links ]

41. C. Wu, L. Chen, and F. Sun, Energy, The Int. J. 21 (1996) 71.        [ Links ]

42. J.M.M. Roco, S. Veleasco, A. Medina, and A. Calvo Hernaudez, J. Appl. Phys. 82 (1997) 2735.        [ Links ]

43. L. Chen, J. Zheng, F. Sun, and C. Wu, Physica Scripta 64 (2001) 184.        [ Links ]

44. L. Chen, J. Zheng, F. Sun, and C. Wu, J. Phys. D: Appl. Phys. 34 (2001) 1727.        [ Links ]

45. L. Chen, F. Sun, and C. Wu, Int. J. Green Energy 2 (2005) 243.        [ Links ]

46. L. Chen, F. Sun, and C. Wu, Int. J. Energy Technology and Policy 5 (2007) 70.        [ Links ]

47. Y. Ust, A. Safa, and B. Sahin, Appl. Energy 80 (2005) 247.        [ Links ]

48. A. Khaliq and R. Kumar, Appl. Energy 81 (2005) 73.        [ Links ]

49. Y. Ust, B. Sahin, A. Kodal, and I.H. Akcay, Appl. Energy 83 (2006) 558.        [ Links ]

50. Y. Zhang, C. Ou, B. Lin, and J. Chen, Trans. ASME J. Energy Technology 128 (2006) 216.        [ Links ]

51. A. Khaliq, Proc. IMechE, Part A, Power & Energy 220 (2006) 425.        [ Links ]

52. N. Zhang, R. Cai, and S. Zhang, Preliminary thermoeconomic analysis for gas turbine and combined cycle generation sets (ECOS'96, Stockholm, Sweden, 1996).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons