SciELO - Scientific Electronic Library Online

vol.9 número2Influencia de gomas de algarrobo y xantana en la estabilidad y aceptabilidad de crema láctea índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Ingeniería agrícola y biosistemas

versión On-line ISSN 2007-4026versión impresa ISSN 2007-3925


JIMENEZ-JIMENEZ, Sergio Iván et al. Quantification of the error of digital terrain models derived from images acquired with UAV. Ing. agric. biosist. [online]. 2017, vol.9, n.2, pp.85-100.  Epub 28-Ago-2020. ISSN 2007-4026.


Topographic surveys based on traditional methods (total stations and GPS) enable representing in detail the characteristics of the terrestrial surface, but they mean a high cost in terms of resources and time. With the use of unmanned aerial vehicles (UAVs) it is possible to obtain digital terrain models (DTMs) with high spatial resolution, but they require field validation to obtain high-accuracy topographic products.


To estimate the precision of DTMs generated from high-resolution images acquired with a UAV by means of the geolocation of 23 terrestrial points (11 control and 12 verification ones) obtained in the field with a GPS-RTK (Global Positioning System - Real Time Kinematic).

Materials and methods:

For the generation of each DTM, a photogrammetric restitution process with a different number of Ground Control Points (GCPs) was used: 4, 5, 6, 8, 9, 10 and 11. To evaluate the precision of the DTMs, four statistical parameters were used.

Results and discussion:

The DTM processed with four points had a root-mean-square error (RMSE) > 3 m, and those of 9, 10 and 11 had an RMSE < 7 cm. The georeferenced DTM with 11 GCPs represented the topography of the site with better accuracy. The largest RMSE was 5.9 cm, which is less than three times the spatial resolution of the orthomosaic (2 cm·pixel-1).


At least five terrestrial GCPs are well distributed throughout the study area for every 15 ha of surveyed area; in addition, it is necessary to add one point for each additional 3 ha to obtain a minimum accuracy of 6 cm on the Z axis and 7 cm on the plane (X, Y, Z).

Palabras llave : photogrammetry; high resolution topography; Ground Control Points; point clouds; flight plan; drone.

        · resumen en Español     · texto en Español | Inglés     · Español ( pdf ) | Inglés ( pdf )