SciELO - Scientific Electronic Library Online

 
vol.16 número2Optimizando el aprendizaje de matemáticas en el primer grado: el impacto del Metaverso de Roblox en el desarrollo de competencias numéricasAnálisis del desempeño de C versus C++ en la producción multihilo de cadenas L-System: un caso de estudio ABP índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Programación matemática y software

versión On-line ISSN 2007-3283

Resumen

CALDERON-SEGURA, Yessica Yazmin; BURLAK, Gennadiy  y  GARCIA PACHECO, José Antonio. Enhancing Electoral Surveys with Artificial Neural Networks. Program. mat. softw. [online]. 2024, vol.16, n.2, pp.49-59.  Epub 17-Sep-2024. ISSN 2007-3283.  https://doi.org/10.30973/progmat/2024.16.2/5.

The objective of this study is to search for the main factors that can influence to predict the results of voting surveys. A system is developed that allows the optimization of Artificial Neural Networks to identify the factors that affect the electoral result, through a computational method that allows the evaluation of the characteristics that influence a successful electoral vote. An Artificial Neural Network with three layers and a back propagation learning algorithm is used. The first phase loads the system by developing a random synthetic database. This will contain the data that will serve as input to the Artificial Neural Network to optimize the most outstanding attributes that affect a vote. The system identifies the inputs to the Artificial Neural Network, and the iterations that can be carried out to optimize its outputs.

Palabras llave : Artificial Neural Network; Conservative; Algorithm.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )