Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista mexicana de ciencias pecuarias
versão On-line ISSN 2448-6698versão impressa ISSN 2007-1124
Resumo
ARAGADVAY-YUNGAN, Ramón Gonzalo et al. In vitro evaluation of sunflower (Helianthus annuus L.) silage alone or combined with maize silage. Rev. mex. de cienc. pecuarias [online]. 2015, vol.6, n.3, pp.315-327. ISSN 2448-6698.
Sunflower silage (SS) is being promoted as an efficient forage for feeding dairy cattle in the face of shortages of irrigation and erratic rainfall. The objective was to compare, through the in vitro gas production technique, the kinetics of ruminal fermentation of SS and its mixtures with maize silage (MzS) to know its nutritional characteristics before its inclusion in feeding strategies. Five combinations of SS with MzS were assessed (MzS%: SS%); T1) 100:0, T2) 75:25, T3) 50:50, T4) 25:75 y T5) 0:100. Combining MzS with 25% SS decreased neutral detergent fiber and acid detergent fiber contents (P<0.05), which resulted in a digestibility of dry mather, organic matter, neutral detergent fiber and metabolizable energy similar to MzS (P>0.05), and with a CP content not statistically higher than MzS. The MzS had the highest total gas production (GP) but at a lower fermentation rate (P<0.05) when compared to T2 that had a better fermentation rate of 0.0530 %/h, with Lag time of 3.4 h. Before ensiling, sunflower supplies 31.8 % more CP, 11.8 % less metabolizable energy and 11.9 % less in vitro digestibility of organic matter than maize plant. Compared to T1, the T2 supplied 1.6 % more crude protein, 2 % less metabolizable energy and 4.4 % less of in vitro digestibility of organic matter. Therefore it is concluded that sunflower silage could be an alternative to substitute up to 25 % of maize silage as the crude protein and metabolizable energy supply are similar to maize silage.
Palavras-chave : Ruminal kinetics; Sunflower silage; Maize silage; Gas production; Fermentation rates.