SciELO - Scientific Electronic Library Online

 
vol.3 número4Evaluación en campo del granulovirus CpGV sobre Cydia pomonella L. (Lepidoptera: Tortricidae)Presencia de Circulifer tenellus Baker y Beet mild curly top virus en maleza durante el invierno en el centro norte de México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Resumo

SANCHEZ COHEN, Ignacio et al. Climate variability and agricultural productivity in areas with erratic rainfall patterns. Rev. Mex. Cienc. Agríc [online]. 2012, vol.3, n.4, pp.805-811. ISSN 2007-0934.

The high variability in space and time of the rainfall patterns, make agriculture in rainfed areas subject to climatic risk. In this situation, the best tool to support decision-making is the hydro-climatic modeling, where the hydrological stochastic processes are considered. In the present study, nested series of algorithms (AA) are used in order to estimate maize crop yield under different climate scenarios. The algorithm is calibrated and applied to a poor rainfed region in northern México (Cuencamé, Durango). It is part of a weather generator (WXPARM) for climate parameters that define the region later to quantify the impact of maize yield under climatic change conditions; using are scaled model to apply global climatic data models (GCMs) at plot level (SDM) and finally the matrices that define the monthly weather conditions in the region of study are used in a model to assess the impact on yield (EPIC) by modeling the balance of moisture in the soil. The results indicate that under climatic change scenarios, it is expected a yield increases of up to 0.3 tha-1 as the change in expected weather patterns, expecting a bimodal behavior. According to the weather patterns in the future, it might be considered to adjusting planting dates for the maximum crop requirements coinciding with the presence of rain.

Palavras-chave : climate uncertainty; modeling; risk.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons