SciELO - Scientific Electronic Library Online

vol.8 número17Regeneración de Sedum praealtum A.DC (siempreviva) vía organogénesisEfecto de los parámetros operativos en la síntesis de nanopartículas magnéticas para aplicaciones biomédicas usando un diseño de experimentos 2k índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Nova scientia

versão On-line ISSN 2007-0705


MENDEZ-ARGUELLO, B. et al. Growth promotion of Capsicum annuum plants by zinc oxide nanoparticles. Nova scientia [online]. 2016, vol.8, n.17, pp.140-156. ISSN 2007-0705.

The applications that nanotechnology (NT) has on agriculture systems are diverse and promising because they have the potential to contribute in maintaining its productivity and efficiency by reducing costs and the quantity of synthetic agrochemicals employed. For instance, it is important to emphasize that by means of NT it is possible to develop encapsulated nanopesticides, stabilization of biopesticides and slow-release fertilizers. Nanoparticles of zinc oxide and silver are studied for their potential as antimicrobial, nanofertilizers and growth promoters of agricultural plants. Therefore, the aim of this study was to evaluate the effect of pure zinc oxide nanoparticles (ZnONPs) and ZnONPs with silver (ZnONPs + Ag) on growth of C. annuum plants. The sol-gel method was used to study the synthesis and characterization of NPs. Foliar application of ZnONPs to pepper plants was done manually once a week. The experimental design was completely at random with four treatments and five repetitions. Data collected were analyzed by ANOVA and Tukey's multiple range tests (p ≤ 0.05). Compared to control plants without the application of ZnONPs, treatments exposed to the application of ZnONPs + Ag (2.5%), were those that had a significant higher shoot and root growth, as well greater biomass production, with higher values of height (16.8%), leaf area (30.3%), total biomass production (59.5%), root dry biomass (112.5%), stem dry biomass (76%) and root length (24.4%). As compared to control plants, those treated with ZnONPs + Ag (2.5%) reported a quantitative increase of chlorophyll index (8%) and leave number (32.6%). The biological effect of the applied NPs, could be related to the zinc activity as a precursor in the production of auxins, which in turn could promote cell division and elongation, as well by its influence on the reactivity of indol acetic acid, which acts as hormonal phytoestimulant. Also ZnONPs might be involved in the biosynthesis of cytokinins and gibberellins; as well on the induction of greater activity of antioxidant enzymes.

Palavras-chave : Agronanotechnology; nanomaterials; nanofertilizers; horticulture.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )