SciELO - Scientific Electronic Library Online

 
vol.15 issue1Selecting the model with the best fair value estimate in an emerging marketThe Optimal Time to Invest in a Coffee Agribusiness Company (an Application of the Real Options Theory) author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de economía y finanzas

On-line version ISSN 2448-6795Print version ISSN 1665-5346

Abstract

GALLARDO DEL ANGEL, Roberto. Financial time series forecasting using Artificial Neural Networks. Rev. mex. econ. finanz [online]. 2020, vol.15, n.1, pp.105-122.  Epub July 03, 2020. ISSN 2448-6795.  https://doi.org/10.21919/remef.v15i1.376.

This paper contains a financial forecast using Artificial Neural Networks. The analysis uses the traditional Backpropagation algorithm, followed by Resilient Backpropagation, to estimate the network weights. The use of Resilient Backpropagation Neural Networks solves the learning rate determination problem. Both algorithms are consistent and offer similar predictions. Six major Stock Exchange Market indices from Asia, Europe, and North America were analyzed to obtain hit ratios that could then be compared among markets. A dependent variable was constructed using daily close prices, which was then used for supervised learning and in a matrix of characteristic variables constructed using technical analysis indicators. The time series dataset ranges from January 2000 to June 2019, a period of large fluctuations due to improvements in information technology and high capital mobility. Instead of prediction itself, the scientific objective was to evaluate the relative importance of characteristic variables that allow prediction. Two contribution measures found in the literature were used to evaluate the relevance of each variable for all six financial markets analyzed. Finding that these measures are not always consistent, a simple contribution measure was constructed, giving each weight a geometric interpretation. Evidence is provided that the Rate-of-Change (ROC) is the most useful prediction tool for four aggregate indices, the exceptions being the Hang Seng and EU50 indices, where fastK is the most prominent tool.

Keywords : G11; G15; G17; Financial Forecasting; Machine Learning; Neural Networks.

        · abstract in Spanish     · text in English     · English ( pdf )