SciELO - Scientific Electronic Library Online

 
vol.12 número1Oxidación simultánea de amonio y p-hidroxibenzaldehido en un reactor de lotes secuenciadosUn método nuevo para determinar el esfuerzo de cedencia a partir de los perfiles de velocidad en un capilar índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Resumo

DIAZ-GONZALEZ, L.; HIDALGO-DAVILA, C.A.; SANTOYO, E.  e  HERMOSILLO-VALADEZ, J.. Evaluation of training techniques of artificial neural networks for geothermometric studies of geothermal systems. Rev. Mex. Ing. Quím [online]. 2013, vol.12, n.1, pp.105-120. ISSN 1665-2738.

A multivariate analysis using artificial neural networks for determining the relative contribution of the cationic composition of fluids (Na, K, Mg, Ca and Li) for the estimation of downhole temperature of geothermat wells is here reported. Neural architectures were evaluated using different numerical techniques of training, activation function logistic and linear, several combinations of inputs, at most 20 neurons in the hidden layer and the measured temperatures as the targets. The obtained results in this paper shows that the relation log(Na/k) obtained the highest relative contribution (69% al 75%), whereas other variables such as, log (Mg/Na2) and log (Ca/Na2), showed a less contribution (3-13% and 12-22 %, respectively). log(Na/Li), log (Li/√Mg) and Li obtained 3% variables had a relative contribution = 3%. The details of the methodology and the validation results are reported in this paper.

Palavras-chave : geothermometers; geothermal energy; Levemberg-Marquard; artificial intelligence; chemical and thermodynamic equilibrium.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons