SciELO - Scientific Electronic Library Online

 
vol.28 número2Automatic Knowledge-Driven Approach for Optimal Service Selection based on ELECTRE III and Quality-Aware ServicesProactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor (CMP) Systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

MEDJAHED, Seyyid Ahmed  y  BOUKHATEM, Fatima. On the Performance Assessment and Comparison of Features Selection Approaches. Comp. y Sist. [online]. 2024, vol.28, n.2, pp.607-622.  Epub 31-Oct-2024. ISSN 2007-9737.  https://doi.org/10.13053/cys-28-2-4211.

In many supervised learning problems, feature selection techniques are increasingly essential across various applications. Feature selection significantly influences the classification accuracy rate and the quality of SVM model by reducing the number of features, remove irrelevant and redundant features. In this paper, we evaluate the performance of twenty feature selection algorithms over four databases. The performance is conducted in term of: classification accuracy rate, Kuncheva’s Stability, Information Stability, SS Stability and SH Stability. To measure the feature selection algorithms, multiple datasets from the UCI Machine Learning Repository are utilized to assess both classification accuracy and stability variations.

Palabras llave : Feature selection; classification; stability; support vector machine.

        · texto en Inglés     · Inglés ( pdf )