Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Resumen
THI, Luong Nguyen; MY, Linh Ha; MINH, Huyen Nguyen Thi y LE-HONG, Phuong. Using BiLSTM in Dependency Parsing for Vietnamese. Comp. y Sist. [online]. 2018, vol.22, n.3, pp.853-862. ISSN 2007-9737. https://doi.org/10.13053/cys-22-3-3023.
Recently, deep learning methods have achieved good results in dependency parsing for many natural languages. In this paper, we investigate the use of bidirectional long short-term memory network models for both transition-based and graph-based dependency parsing for the Vietnamese language. We also report our contribution in building a Vietnamese dependency treebank whose tagset conforms to the Universal Dependency schema. Various experiments demonstrate the efficiency of this method, which achieves the best parsing accuracy in comparison to other existing approaches on the same corpus, with unlabeled attachment score of 84.45% or labeled attachment score of 78.56%.
Palabras llave : Deep learning; BiLSTM; dependency parsing; Vietnamese.
