Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Resumen
HA, Thi-Thanh et al. Unsupervised Sentence Embeddings for Answer Summarization in Non-factoid CQA. Comp. y Sist. [online]. 2018, vol.22, n.3, pp.835-843. ISSN 2007-9737. https://doi.org/10.13053/cys-22-3-3027.
This paper presents a method for summarizing answers in Community Question Answering. We explore deep Auto-encoder and Long-short-term-memory Auto-encoder for sentence representation. The sentence representations are used to measure similarity in Maximal Marginal Relevance algorithm for extractive summarization. Experimental results on a benchmark dataset show that our unsupervised method achieves state-of-the-art performance while requiring no annotated data.
Palabras llave : Summarizing answers; non-factoid questions; multi-documment summarization; community question-answering; auto encoder; LSTM.
