Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Resumen
RUDRAPAL, Dwijen y DAS, Amitava. Semantic Role Labeling of English Tweets. Comp. y Sist. [online]. 2018, vol.22, n.3, pp.739-746. ISSN 2007-9737. https://doi.org/10.13053/cys-22-3-3035.
Semantic role labeling (SRL) is a task of defining the conceptual role to the arguments of predicate in a sentence. This is an important task for a wide range of tweet related applications associated with semantic information extraction. SRL is a challenging task due to the difficulties regarding general semantic roles for all predicates. It is more challenging for Social Media Text (SMT) where the nature of text is more casual. This paper presents an automatic SRL system for English tweets based on Sequential Minimal Optimization (SMO) algorithm. Proposed system is evaluated through experiments and reports comparable performance with the prior state-of-the art SRL system.
Palabras llave : Social media text; tweet stream; semantic role labeling; tweet summarization.
