SciELO - Scientific Electronic Library Online

 
vol.21 número2Identificación del campo de trabajo de un robot hexápodo utilizando optimización multiobjetivoEstudio comparativo entre el algoritmo de Kleinberg y el algoritmo Biased Selection para la construcción de redes small world índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

MARTINEZ-GARCIA, Juan Carlos; AGUILAR-IBANEZ, Carlos  y  SORIA-LOPEZ, Alberto. Bridging the Gap Between Model-Based Design and Reliable Implementation of Feedback-Based Biocircuits: A Systems Inverse Problem Approach. Comp. y Sist. [online]. 2017, vol.21, n.2, pp.315-324. ISSN 2007-9737.  https://doi.org/10.13053/cys-21-2-2740.

Our concern is the tuning of mathematical models describing rationally designed genetic biocir-cuits. Based on a deterministic lumped continuous-time approach, we propose a tuning methodology combining both exact algebraic parameter reconstruction and nonlinear parameter estimation of a given model supporting the design of a specific genetic biocircuit, i.e., we bridge the gap between model-based design and implementation as the solution of a systems inverse problem. As a proof of concept, our proposal is constrained to cyclic feedback systems characterizing synthesized transcriptional networks conditioned to display sustained oscillatory behavior. Our proposed methodology is illustrated via computer–based simu-lations involving the tuning of a state–based model describing a well–know cyclic feedback biocircuit: the celebrated repressilator. Tuning in our case is conceived as a procedure to adjust the parameter values of the mathematical model taking into account for this the actual behavior observed from the corresponding synthesized biocircuit.

Palabras llave : Systems biology; synthetic biology; tuning of mathematical models; algebraic parameter reconstruction; observer based system identification; synthetic transcriptional networks; cyclic feedback biocircuits.

        · texto en Inglés     · Inglés ( pdf )