SciELO - Scientific Electronic Library Online

 
vol.46 número4Modelos de predicción fenológica para maíz blanco (Zea mays L.) y gusano cogollero (Spodoptera frugiperda J. E. Smith) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Resumen

GODINEZ-JAIMES, Flaviano et al. Collineartity and separated data in the logistic regression model. Agrociencia [online]. 2012, vol.46, n.4, pp.411-425. ISSN 2521-9766.

Collinearity and the lack of overlap in the data are problems that afect inference based on the logistic regression model. Simulation was used to investigate how the estimators that deal with collinearity (iterative Ridge) are afected, along with separation in the data (Firth's, and Rousseeuw and Christmann's) or both problems (Shen and Gao's). These estimators were compared considering the scaled condition number of the estimated information matrix, the bias and the mean squared error. In each one of the four scenarios studied, formed by using two levels of collinearity and two sample sizes, three degrees of overlap were considered in the data. It was found that iterative Ridge and Shen and Gao's estimators have null conditioning, as well as smaller bias and mean square error. The degree of overlap and the level of collinearity strongly afect the bias and mean square error of the maximum likelihood, Firth's and Rousseeuw and Christmann's estimators.

Palabras llave : Firth's estimator; estimated maximum likelihood estimator; penalized double estimator; iterative Ridge estimator; overlapped data.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons