SciELO - Scientific Electronic Library Online

 
vol.28 issue2Tarsometatarsal morphological variations in the penguins (Aves, Spheniscifomes) from the Pisco Formation (Miocene-Pliocene) stratigraphic sequence, Peru author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias geológicas

On-line version ISSN 2007-2902Print version ISSN 1026-8774

Abstract

GARCIA-TOVAR, Gloria P.  and  MARTINEZ-SERRANO, Raymundo G. Geology and geochemistry of the Pleistocene lava flows from the Telapón stratovolcano, Sierra Nevada, México. Rev. mex. cienc. geol [online]. 2011, vol.28, n.2, pp.301-322. ISSN 2007-2902.

The Telapón stratovolcano belongs to the northern part of the Sierra Nevada, in the central-eastern part of the Trans-Mexican Volcanic Belt. Geologic, stratigraphic, and geochemical studies as well as K-Ar age determinations were carried out in this volcano formed by dome structures, lava flows and pyroclastic deposits. The lithology was grouped into two volcanic events: an andesitic-dacitic Lower Volcanic Event that was emplaced between 1.03 ± 0.02 and ca.0.65 Ma, and a dacitic-rhyolitic Upper Volcanic Event emplaced between ca.0.65 Ma to ca.35,000 years ago. The summit of the volcano (4,060 m a.s.l.) is occupied by a 274, 000 years old (K-Ar date) dacitic lava flow. Block and ash flow pyroclastic deposits and pumice fall deposits ca. 35,000 years old crop out on its flanks. The new K-Ar ages indicate that the volcanic activity of the Telapón volcano was coeval to the activity in the Sierra Nevada. Phenocrystals of the porphyritic lava flows show evidence of disequilibrium and magma-mixing. The SiO2 vs. alkalis diagram shows that most rocks are classified as basaltic andesite, andesite, dacite and rhyolite (53 - 78 wt.% of SiO2), following a calc-alkaline trend. The trace element patterns are similar for all samples indicating a common magmatic source. These patterns display enrichment in the large-ion lithophile elements (LILE: Cs, Rb, Ba and K) and Pb relative to the high-field-strength elements (HFSE: Nb, Ta). Chondrite-normalized REE patterns display light rare earth elements enrichment (La-Sm) with respect to the heavy rare earth elements (Eu-Lu), which have flat patterns. These chemical characteristics are typical of subduction-related volcanic arcs, where the LIL elements could be provided by dehydration of the subducted plate into a depleted mantle. Crystal fractionation processes from a parental basaltic andesite magma can explain the lithological and geochemical variations of the volcanic rocks. However, magma mixing and assimilation processes modified the magma composition. The fractional crystallization and probable crustal assimilation seem to be more important in the Telapón stratovolcano compared with the southern part of the Sierra Nevada.

Keywords : volcanism; geochemistry; K-Ar ages; Pleistocene; Telapón Volcano; Sierra Nevada; Mexico.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License