SciELO - Scientific Electronic Library Online

 
vol.68 número4Solar Thermochemistry Overview: An Approach to Solar Thermal Energy Storage and Hydrogen ProductionMexican Contribution to Sulfide Minerals Electrochemistry: A Review índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.68 no.4 Ciudad de México oct./dic. 2024  Epub 03-Mar-2025

https://doi.org/10.29356/jmcs.v68i4.2288 

Reviews

Ethnobotanical Medica, Pharmacology and Phytochemistry of the Species Salvia del Valle de México: A Review

Rocio Ortega1 
http://orcid.org/0000-0002-6569-0167

Fernando Calzada2 

Ángeles Fortis-Barrera1 
http://orcid.org/0000-0003-0923-501X

Jesus Solares-Pascasio1 

Francisco Javier Alarcón-Aguilar1  * 

1Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, CDMX 02200, México.

2Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, CDMX, México.


Abstract.

The Salvia genus is one of the most extensive in the Lamiaceae family. The Salvia genus comprises approximately 900 species worldwide, 33 of which exist in the Valle de México, the most populated region of Mexico. The taxonomic identification of these species often represents a problem because they present a great variety of synonyms or variations in their nomenclature, like S. polystachya with 12 synonymies. The traditional medicinal uses of Salvia species in Mexico are varied and include treatment for around 97 diseases. At least 20 species of the Salvia genus have well-documented medicinal ethnobotanical information with various uses, including gastrointestinal disorders, gynecological problems, promoting childbirth, antipyretic, disinfecting wounds, diabetes, and respiratory issues. The phytochemistry of the Salvia species from the Valle of Mexico is also vast and diverse; at least 315 chemical compounds have been identified, mainly terpenoids, that have received significant attention due to their multifaceted biological activities. Among the activities mentioned are anticancer, anti-hyperglycemic, anti-fungal, anti-inflammatory, or anti-microbial. Some of the compounds present more than one biological activity. Given their extensive structural diversity, terpenoids represent a great source of compounds for developing new therapeutic agents. However, additional clinical and experimental studies are still needed to elucidate the mechanisms of action, optimal doses, and potential toxicity of the isolated compounds.

Keywords: Salvia spp.; lamiaceae; medicinal plants; terpenoid compounds; phytochemistry; pharmacology

Resumen.

El género Salvia es uno de los más extensos en la familia Lamiaceae. El género Salvia comprende aproximadamente 900 especies alrededor del mundo, de las cuales 33 se encuentran en el Valle de México, la región más poblada de México. La identificación taxonómica de estas especies representa frecuentemente un problema al presentar una gran cantidad de sinonimias o variaciones en su nomenclatura, como S. polystachya que tiene 12 sinonimias. Los usos en medicina tradicional de Salvias en México son variados, incluyendo tratamiento para alrededor de 97 enfermedades. Por lo menos 20 especies del género Salvia tienen información bien documentada de sus usos médicos y etnobotánicos, con una amplia variedad de usos que incluye desórdenes gastrointestinales, problemas ginecológicos, promotores de parto, antipirético, para desinfectar heridas, diabetes o problemas respiratorios. La fitoquímica de las especies de Salvia del Valle de México es también amplia y diversa. Por lo menos 315 compuestos químicos han sido identificados y aislados, principalmente terpenoides, que han recibido gran atención debido a sus actividades biológicas multifacéticas, como anticancerígenas, antihiperglucémicas, antifúngica, antiinflamatorias o antimicrobianas. Algunos de los compuestos presentan más de una actividad biológica. Dada su extensa diversidad estructural, los terpenoides representan una amplia fuente de compuestos para el desarrollo de nuevos agentes terapéuticos. Sin embargo, estudios clínicos y experimentales adicionales son necesarios para elucidar el mecanismo de acción, dosis óptimas y toxicidad potencial de los compuestos aislados.

Palabras clave: Salvia spp.; lamiaceae; plantas medicinales; compuestos terpenoides; fitoquímica; farmacología

Introduction

The Lamiaceae (Labiatae) family comprises approximately 236 genera and 7,173 species [1,2]. The genus Salvia is one of the most extensive groups in this family, representing around 900 species worldwide [3,4]. The term Salvia comes from the Latin "salvare," meaning "to heal or be safe and unharmed," referring to the healing properties of these species [2,5-9], which are recognized in worldwide traditional medicine. In the Americas, around 500 species are registered in Mexico, Central America, and South America, representing the second most diverse territory, with approximately 312 species, of which 75 to 88% are endemic [5,10-12]. In Mexico, the most significant number of Salvia species is concentrated in the western and southeastern, along the Occidental Sierra Madre, the Trans-Mexican Volcanic Belt, and the Sierra Madre del Sur.

Salvia species are typically shrubs or climbing shrubs from 30 to 150 cm tall that can be annual or perennial [12]. Their stems are angular, characteristic of the Lamiaceae family, with leaves that are usually velvety or hairy, and they can often be rugose, entire, toothed, lobed, or pinnate. The flower stalks produce small bracts different from the basal leaves. Inflorescences are borne in clusters or panicles that produce brightly colored flowers, depending on the species [7,9,12]. The calyx is tubular or bell-shaped without a bearded throat, divided into two lips (that is why the name of labiates): the upper whole or tridentate and the lower cleft. The corolla is usually bilabiate. The stamens are two short structures with bicellular anthers. Many species have trichomes (hairs) on the surface of the leaves, stems, and flowers [7,9,12].

Several Salvia species have great economic importance due to their edible, aromatic, and medicinal properties. Many of these species contain high amounts of essential oils, phenolic compounds, antioxidants, and other valuable chemical constituents [5]. The main compounds described in the Salvia species are terpenoids and flavonoids. Aerial parts, especially flowers and leaves, contain flavonoids, triterpenoids, and monoterpenes, while the roots contain primarily diterpenoids [7,9,10]. Salvia species have been used since ancient times for different ailments, ranging from aches to epilepsy, and the primary uses are for treating colds, bronchitis, tuberculosis, hemorrhages, and menstrual disorders, among others [7,9]. The Mexican Salvia species are highly valued for their medicinal, nutritional, and ritualistic uses and are often used as part of vernacular medicine or in mystical/religious rituals. Prominent examples are Salvia divinorum (“planta de la pastora”), which is a hallucinogen plant used in rituals by the Mazatecas, an endemic population in the northeastern of Oaxaca [13], and Salvia hispanica (chia), which is widely used as a food source since pre-Hispanic times [14].

Ramamoorthy (2001) botanically identified 33 Salvia species in the Valle de México [9] (Table 1). The Valle de México has an altitude of 2,240 meters (7,350 ft), covering around 7,866 km2, and includes 16 town halls in Mexico City, 59 municipalities of the State of Mexico, and one municipality in the State of Hidalgo [15]. Geographically, it is located between the Anahuac Lake and Volcano Region of the physiographic province of the Neo-volcanic Axis and is surrounded by the mountains of Monte Alto, Monte Bajo, and Las Cruces, as well as the Sierra Nevada and Chichinauhtzin mountain range (Fig. 1). This surface presents intermountain, valleys, plateaus, and ravines, as well as semi-deep land, in which are located the lakes of Texcoco, Xochimilco, and Chalco. There are also isolated topographic prominences, such as the "Cerro de la Estrella," the "Cerro del Peñón," and the "Cerro de Chapultepec." The Valle de México also represents the most populated region of Mexico, with more than 20 million inhabitants, who often agree with these species despite their lack of knowledge about their medical uses and properties. In this region, 33 species of Salvia had been recorded [9]. Although several researchers worldwide have contributed ethnobotanical, phytochemical, and pharmacological information for some of these species [5,16-19], it is still necessary to continue working on the supplementation and organization of this information. In certain instances, these species exhibit a broad range of botanical synonyms or variations in their nomenclature, which can result in some confusion, like S. polystachya, that have 12 botanical synonymies and 11 common names. Therefore, their taxonomic identification often represents a problem. This review aims to organize and synthesize the ethnobotanical, pharmacological, and phytochemical knowledge of the 33 Salvia species described by Ramamoorthy in the Valle de México [9]. These species have been extensively documented by diverse research groups in Mexico and other regions, including Europe and Asia [20-25]. Our primary objective is to critically analyze and compare these data, advancing their study at the ethnopharmacological, phytochemical, and therapeutic levels. By doing so, we seek to validate the traditional uses attributed to these remarkable plant species.

Table 1 Scientific name of the 33 Salvia species described by Ramamoorthy in the Valle de México [9]. 

1. S. axillaris Moc & Sessé ex Benth. 2. S. carnea Kunth. 3. S. chamaedryoides Cav.
4. S. circinata Cav. 5. S. concolor Lamb. ex Benth 6. S. elegans Vahl.
7. S. filifolia Ramamoorthy 8. S. fulgens Cav. 9. S. gesneriiflora Lindl & Paxton
10. S. helianthemifolia Benth. 11. S. hirsuta Jacq. 12. S. hispanica L.
13. S. keerlii Benth. 14. S. laevis Benth. 15. S. lavanduloides Kunth.
16. S. leucantha Cav. 17. S. melissodora Lag. Me Vaugh. 18. S. mexicana L.
19. S. microphylla H.B.&H. 20. S. misella Kunth. 21. S. mocinoi Benth.
22. S. moniliformis Fern. 23. S. oreopola Fern. 24. S. patens Cav.
25. S. polystachya Cav. 26. S. prunelloides Kunth. 27. S. pulchea DC.
28. S. reflexa Hornem. 29. S. reptans Jacq. 30. S. stachyoides Kunth.
31. S. tiliifolia Vahl. 32. S. tubifera Cav. 33. S. verbenacea L.

Fig.1. The delimitation of Mexican metropolitan areas (Valle de México). Modified from OECD, 2015 

Methodology

Information from the 33 species of Salvias recorded by Ramamoorthy in the Valle de México [9] was obtained from diverse databases, such as Web of Science, Google Scholar, Google Books, Scopus, ScienceDirect, SpringerLink, Wiley Online, PubMed, textbooks, taxonomic reviews, university theses, and SciFinder. With the obtained data, such as botanical characteristics, botanical synonymy, empirical uses, and biological activities, a meta-analysis was performed, and the compounds isolated were documented.

Results and discussion

Botanical synonymy, popular names, and distribution

Plant nomenclature is ruled by the International Code of Botanical Nomenclature, which aims to provide a correct and accepted name for a taxon based on publication priority. The application of the norms of the code and the taxonomic studies that imply some change in the circumscription of the taxon result in changes in nomenclature and botanic synonymy, such that in the study of medicinal plants, the synonymies can be a problem by creating confusion in any investigation [26,27]. Therefore, the first step was identifying which species had synonyms or some variation (Table 2), highlighting that many of the Salvia species studied (84 %) presented some of these conditions. The plant with a significant number of synonyms was S. polystachya, with 12 synonymies, seven variations, and three subspecies, followed by S. carnea, with 13 synonymies and two variations: S. fulgens, with 11 synonymies and three variations, and S. mexicana with nine synonymies and three variations. This situation illustrates how easy it is to make mistakes when working with species Salvia, so taxonomic identification is a priority before any study. Another frequent problem for species identification focuses on popular or common names with ethnobotanical relevance. However, In Mexico, the popular names vary depending on the region where they are found. Of the included species in the present study, 57.6% had more than one popular name, where "mirto," "chia," and "salvia" are the most used. S. microphylla is recognized with 18 popular names, followed by S. lavanduloides with 15 names. The consulted bibliography recorded a single popular name for five species; no popular name for nine species was documented. The importance of the correct name of the plant species consists in being able to avoid confusion or even a duplicate work for incorrect use of the names; in the case of S. circinata (S. amarissima), it is possible to observe publications with both names; it is essential to corroborate the correct and accepted scientific name of the plant. [28,29].

The geographical distribution of these 33 species is not exclusive to the Valle de México. Most of them are distributed in several states of Mexican territory (Table 2). The data indicate that in the state of Michoacan, there are around 27 species, followed by the State of Mexico with 18, and the State of Hidalgo with 17. The best-distributed species in Mexico are S. polystachya and S. hispanica (Table 2). These data are essential if we consider that the same common name can be used to name different species of the same or other genera, or a single species can receive several names, which vary from one region to another, and because some species share the same distribution in the Valle de México, including Ciudad de México, Estado de México, and Hidalgo. We agree with [2] that research focused on medicinal plants requires essential botanical assistance, especially in taxonomy and nomenclature.

The distribution of the plants in the different regions also affects the kind and concentration of secondary metabolites in the plant. In S. hispanica, the weather, altitude, humidity, and nutrients of the region of Veracruz, which is in the East of Mexico, with significant humidity, being a jungle area, are not the same conditions that the State of Durango, in the north of the country, with a desert climate. The different territorial, geographic, and climatic conditions provoke changes in the metabolites, and it may affect all the Salvia species that have a wide distribution in the country, even in the same species with different geographical distribution. These changes are a significant area of study to determine the impact of the different conditions in synthesizing metabolites of pharmacological interest [28,30].

Table 2 Scientific name, botanical synonymy, popular names, and distribution of Salvia species from the Valle de México. 

Scientific name Botanical synonymy / Varieties Common name Distribution in other states of Mexico
S. axillaris Moc & Sessé ex Benth.

  • = S. cuneifolia Benth.

  • = S. axillaris var. axillaris.

  • Hisopo de Puebla

  • Vegeta

  • Durango

  • Guanajuato

  • Hidalgo

  • Jalisco

  • Michoacán

  • Oaxaca

  • Puebla

  • San Luis Potosí

  • Tlaxcala

  • Veracruz

S. carnea Kunth.

  • = S. membranacea Benth.

  • = S. pseudogracilis Epling.

  • = S. myriantha Epling.

  • = S. natalis Epling

  • = S. carnea var. carnea.

  • = S. debilis Epling.

  • = S. gracilis Benth.

  • = S. iodochroa Briq.

  • = S. irazuensis Fernald.

  • = S. killipiana Epling.

  • = S. martensii Galeotti.

  • = S. membranacea var. villosula Benth.

  • = S. purpurascens M. Martens & Galeotti.

  • = S. sidifolia M. Martens & Galeotti.

  • = S. simulans Fernald.

Chía

  • Chiapas

  • Guerrero

  • Hidalgo

  • Michoacán

  • Oaxaca

  • Nayarit

  • Veracruz

S. chamaedryoides Cav.

  • = S. menthifolia Ten.

  • = S. chamaedrifolia Andrews.

  • = S. chamaedryoides var. isochroma Fernald.

  • = S. chamaedrys Willd.

Mirto

  • Hidalgo

  • Morelos

  • Nuevo León

  • Puebla

  • San Luis Potosí

  • Zacatecas

S. circinata Cav.

  • = S. amarissima Ort.

  • = S. amara Jacq.

  • = S. hirsuta Sessé & Moc. non Jacq.

  • Bretónica

  • Chupona

  • Diabetina

  • Hierba de cáncer

  • Hierba de tapón

  • Prodigiosa

  • Ñadri (otomí)

  • Estado de México

  • Guerrero

  • Michoacán

  • Oaxaca

  • San Luis Potosí

  • Veracruz

S. concolor Lamb. ex Benth

  • = S. cyanea Benth.

  • = S. cyaniflora A. Dietr.

  • = S. cyanifera Otto ex Benth.

Hierba

  • Colima

  • Estado de México

  • Guerrero

  • Jalisco

  • Michoacán

  • Morelos

  • Puebla

S. elegans Vahl.

  • = S. camertonii Regel.

  • = S. incarnata Cav.

  • = S. longiflora Sessé & Moc.

  • = S. microcalyx Scheele.

  • = S. punicea M. Martens & Galeotti.

  • = S. rutilans Carrière.

  • = S. elegans var. sonorensis Fernald.

  • = S. microculis Poir.

  • Flor del cerro

  • Hierba del burro

  • Limoncillo

  • Mirto

  • Mirto de campo

  • Mirto de flor roja

  • Mirto inglés

  • Mirto mocho

  • Salvia

  • Toronjil de monte

  • Jetcho deni (otomí)

  • Chihuahua

  • Durango

  • Estado de México

  • Hidalgo

  • Michoacán

  • Oaxaca

  • Puebla

  • Sonora

  • Veracruz

S. filifolia Ramamoorthy NS NS

  • Guanajuato

  • Michoacán

  • Estado de México

S. fulgens Cav.

  • = S. cardinalis Kunth.

  • = S. boucheana Kunth.

  • = S. cardinalis Kunth.

  • = S. incana M. Martens & Galeotti.

  • = S. grandiflora Sessé & Moc.

  • = S. orizabensis Fernald.

  • = S. pendula Sessé & Moc.

  • = S. schaffneri Fernald.

  • = S. fulgens var. boucheana (Kunth) Benth.

  • = S. fulgens f. boucheana (Kunth) Voss.

  • = Piaradena fulgens (Cav.) Raf.

  • Mirto

  • Mirto macho

  • Mirto macho del popo

  • Pinyesi (mazahua)

  • Estado de México

  • Michoacán

  • Puebla

  • Tlaxcala

S. gesneriiflora Lindl & Paxton

  • = S. barbata Sessé & Moc.

  • = S. fulgens f. gesneriiflora (Lindl. & Paxton) Voss.

  • Aparicua

  • Flor de colibrí

  • Flor de chuparrosa

  • Flor de Tzintzungaraman (purépecha)

  • Estado de México

  • Jalisco

  • Michoacán

  • Puebla

S. helianthemifolia Benth. NS Mirto corriente

  • Guanajuato

  • Guerrero

  • Hidalgo

  • Jalisco

  • Michoacán

  • Morelos

  • Querétaro

  • San Luis Potosí

  • Veracruz

S. hirsuta Jacq.

  • = S. cryptanthos Schult.

  • = S. phlomoides Cav.

  • = S. sideritidis Vahl.

  • = S. bracteata Poir.

  • = S. ciliaris Sessé & Moc.

  • = S. ciliata Poir.

  • = S. nepetifolia Desf.

NS

  • Durango

  • Estado de México

  • Guanajuato

  • Hidalgo

  • Oaxaca

  • Querétaro

  • San Luis Potosí

  • Texcoco

  • Tlaxcala

  • Zacatecas

S. hispanica L.

  • = S. hispanica var. chionocalyx Fernald.

  • = S. hispanica var. intonsa Fernald.

  • = S. neohispanica Briq.

  • = S. prysmatica Cav.

  • = S. schiedeana Stapf.

  • = S. tetragona Moench.

  • = Kiosmina hispanica (L.) Raf.

  • = S. chia Colla.

  • = S. chia Sessé & Moc.

  • Chía

  • Chía blanco

  • Tzozolxochitl

  • Coahuila

  • Chihuahua

  • Durango

  • Guanajuato

  • Guerrero

  • Jalisco

  • Michoacán

  • Morelos

  • Oaxaca

  • Puebla

  • San Luis Potosí

  • Sonora

  • Veracruz

S. keerlii Benth. NS NS

  • Durango

  • Guanajuato

  • Hidalgo

  • Michoacán

  • Nuevo León

  • Oaxaca

  • Querétaro

  • San Luis Potosí

  • Tamaulipas

  • Zacatecas

S. laevis Benth.

  • = S. laevis Benth.

  • = S. comosa Peyr.

  • = S. comosa var. hypoglauca Fernald.

  • = S. hypoglauca Briq.

  • = S. pseudocomosa Epling.

  • Salvia real

  • Palmita

  • Durango

  • Estado de México

  • Guanajuato

  • Hidalgo

  • Jalisco

  • Michoacán

  • Oaxaca

  • Puebla

  • Querétaro

  • San Luis Potosí

  • Veracruz

S. lavanduloides Kunth.

  • = S. agnes Epling.

  • = S. humboldtiana Schult.

  • = S. lavanduloides Kunth var. latifolia Benth.

  • = S. fratrum Standl.

  • = S. lavanduloides var. hispida Benth.

  • = S. purpurina La Llave.

  • Altamisa

  • Alucena

  • Azulilla

  • Cantuesco

  • Cenicilla

  • Chabacal

  • Ordoncillo

  • Lucema

  • Lúcuma

  • Mazorquita

  • Poleo

  • Salvia morada

  • Yaxal nich vomol (tzotzil)

  • Recámpona (mazahua)

  • Cuetehton (náhuatl)

  • Chiapas

  • Estado de México

  • Guerrero

  • Hidalgo

  • Michoacán

  • Morelos

  • Oaxaca

  • Puebla

  • Veracruz

S. leucantha Cav.

  • = S. bicolor Sessé & Moc.

  • = S. discolor Kunth.

  • = S. leucantha f. iobaphes Fernald.

  • Algodoncillo

  • Cordoncillo

  • Cordón de Jesús

  • Cordón de San Francisco

  • Lana

  • Rabo de gato

  • Salvia cruz

  • Salvia real

  • Moco de pavo

  • Moradoxóchitl (náhuatl)

  • Tochomixochitl

  • Estado de México

  • Hidalgo

  • Michoacán

  • Morelos

  • Oaxaca

  • Puebla

  • San Luís Potosí

  • Tabasco

  • Zacatecas

S. melissodora Lag. Me Vaugh.

  • = S. scorodoniaefolia Poir.

  • = S. scorodoniae Desf. ex Poir.

  • = S. scorodoniaefolia var. crenaea Fernald.

  • = S. scorodonia Benth.

  • = S. dugesii Fernald.

  • Orégano

  • Tkulh origan (tepeh)

  • Tikolh origam

  • Chihuahua

  • Durango

  • Guerrero

  • Hidalgo

  • Michoacán

  • Oaxaca

  • Zacatecas

S. mexicana L.

  • = S. mexicana L. var. mexicana

  • = S. mexicana var. minor Benth.

  • = S. mexicana f. minor Sessé & Moc.

  • = S. mexicanavar.majorBenth.

  • = Hemistegia mexicana (L.) Raf.

  • = Jungia altissima Moench.

  • = S. amethystina Salisb.

  • = S. lupulina Fernald.

  • = S. nitidifolia Ortega.

  • = S. papilionacea Cav.

  • = Sclarea mexicana (L.) Mill.

  • = Sclarea mexicana (L.) Dill.

  • Chía

  • Marrubio

  • Tacote

  • Tapachichi

  • Azul-sipari (purépecha)

  • Charahuesca (purépecha)

  • Ichukuta (purépecha)

  • Tapachichi

  • Chiapas

  • Chihuahua

  • Jalisco

  • Michoacán

  • Morelos

  • Oaxaca

  • Sinaloa

  • Tlaxcala

  • Veracruz

  • Zacatecas

S. microphylla H.B. & H.

  • = S. microphylla Kunth. var. microphylla.

  • = S. microphylla var. neurepia.

  • = S. grahamii Benth.

  • = S. lemmonii A. Gray.

  • = S. microphylla Sessé & Moc.

  • = S. microphylla var. canescens A. Gray.

  • = S. microphylla var. wislizeni A. Gray.

  • = S. obtusa M. Martens & Galeotti.

  • = S. odoratissima Sessé & Moc.

  • = S. lesemia coccineaRaf.

  • Diente de acamaya

  • Hierba de mirto

  • Mastranzo

  • Mirto

  • Mirto blanco

  • Mirto de castilla

  • Mirto chico

  • Mirto de huerto

  • Mirto violeta

  • Toronjil

  • Verbena

  • Mistro

  • Mistru

  • Mishto (tzotzil)

  • Tzil bomol (tzotzil)

  • Ix tasalak (tepehua)

  • Mustia (purepecha)

  • Kaisto nchia (popoloca)

  • Chiapas

  • Durango

  • Estado de México

  • Guanajuato

  • Hidalgo

  • Jalisco

  • Michoacán

  • Nuevo León

  • Puebla

  • Tamaulipas

  • Veracruz

S. misella Kunth.

  • = S. riparia Kunth.

  • = S. lateriflora Fernald.

  • = S. obscura Benth.

  • = S. viscosa Sessé & Moc.

  • = S. privoides Benth.

  • = S. occidentalis var. obscura (Benth.) M. Gómez

  • Chía

  • Hierba del cáncer

  • Hierba de golpe

  • Quelite lengua de toro

  • Venenosa

  • Baja California

  • Guerrero

  • Michoacán

  • Tamaulipas

  • Veracruz

S. mocinoi Benth.

  • = S. lophantha Benth.

  • = S. rubiginosa Benth.

  • = S. rubiginosa var. hebephylla Fernald.

  • = S. saltuensis Fernald

  • = S. zacuapanensis Brandegee.

  • = S. lophanthoides Fernald.

NS

  • Guerrero

  • Jalisco

  • Michoacán

  • Puebla

S. moniliformis Fern. NS NS

  • Estado de México

  • Morelos

S. oreopola Fern. NS NS

  • Estado de México

  • Morelos

  • Oaxaca

S. patens Cav.

  • = S. decipiens M. Martens & Galeotti.

  • = S. grandiflora Née ex Cav.

  • = S. macrantha Schltdl.

  • = S. spectabilis Kunth.

  • = S. staminea M. Martens & Galeotti.

  • Flor de gallito

  • Quiquiriquí

  • Mirto

  • Mirto azul

  • Estado de México

  • Hidalgo

  • Michoacán

  • San Luis Potosí

S. polystachya Cav.

  • = S. polystachya Ort.

  • = S. brevicalyx Benth.

  • = S. caesia Willd.

  • = S. cataria Briq.

  • = S. compacta Kuntze.

  • = S. compacta var. irazuensis Kuntze.

  • = S. compacta var. latifolia Kuntze.

  • = S. compacta var. oerstediana Kuntze.

  • = S. durandiana Briq. ex T. Durand & Pittier.

  • = S. eremetica Cerv. ex Lag.

  • = S. flexuosa C. Prezl ex Benth.

  • = S. lilacina Fernald.

  • = S. lineatifolia Lag.

  • = S. menthiformis Fernald.

  • = S. polystachya var. albicans Fernald.

  • = S. polystachya subsp. caesia (Humb. & Bonpl.) Briq.

  • = S. polystachya subsp. compacta (Kuntze) Alziar.

  • = S. polystachya subsp. durandiana Briq.

  • = S. polystachya var. philippensis Fernald.

  • = S. polystachya var. potosiana Briq.

  • = S. polystachya var. seorsa Fernald.

  • = S. reducta Epling.

  • Alchichía

  • Azulema

  • Chía de campo

  • Hierba chica

  • Lucemilla

  • Mirto

  • Poleo azul

  • Romerillo

  • Santomexochitl

  • Ulcema

  • Xilpapah

  • Chiapas

  • Colima

  • Estado de México

  • Guanajuato

  • Guerrero

  • Hidalgo

  • Jalisco

  • Michoacán

  • Morelos

  • Nayarit

  • Oaxaca

  • Puebla

  • Querétaro

  • San Luis Potosí

  • Tamaulipas

  • Tlaxcala

  • Veracruz

S. prunelloides Kunth.

  • = S. prunelloides f. minor Loes.

  • = S. rhombifolia Sessé & Moc.

  • = S. trichandra Briq.

  • Hierba de gallo

  • Oreja de venado

  • Salvia azul

  • Suimalh nanakl (tepech)

  • Chiapas

  • Durango

  • Michoacán

  • Nuevo León

  • San Luis Potosí

  • Zacatecas

S. pulchea DC.

  • = S. ancistrocarpha Fernald.

  • = S. doliostachys Lag. ex Benth.

NS

  • Estado de México

  • Michoacán

S. reflexa Hornem.

  • = S. aspidophylla Schult.

  • = S. trichostemoides Pursh.

  • Almaraduz grande

  • Chía

  • Mimititán

  • Estado de México

  • Michoacán

  • Nuevo León

  • Zacatecas

S. reptans Jacq.

  • = S. angustifolia Cav.

  • = S. angustifolia var. glabra Briq.

  • = S. angustifolia var. glabra A. Gray.

  • = S. heterotricha Fernald.

  • = S. leptophylla Benth.

  • = S. linearis Sessé & Moc.

  • = S. linifolia M. Martens & Galeotti.

  • = S. virgata Ortega.

  • = S. unicostata Fernald.

  • Hierba de golondrina

  • Hierba de pozuña

  • Romerillo

  • Chiapas

  • Estado de México

  • Hidalgo

  • Jalisco

  • Michoacán

  • Puebla

  • Zacatecas

S. stachyoides Kunth.

  • = S. elongata Kunth.

  • = S. stricta Sessé & Moc.

  • = S. simplexSpreng.

  • = S. betónica Schult.

Salvia Negra

  • Michoacán

  • Morelos

  • Veracruz

S. tiliifolia Vahl.

  • = S. fimbriata Kunth.

  • = S. myriantha Epling.

  • = S. obvallata Epling.

  • = S. psilophylla Epling.

  • = S. tiliifolia Lag.

  • = S. tiliifolia var. albiflora (M. Martens & Galeotti) L.O. Williams.

  • = S. tiliifolia var. alvajaca (Oerst.) L. O. Williams.

  • = S. tiliifolia var. cinerascens Fernald.

  • = S. tiliifolia var. rhyacophila Fernald.

  • = S. tiliaefolia Vahl.

  • Chia chimarrona

  • Chupona

  • Hierba de gallo

  • Limpia tuna

  • Tronadora

  • Chiapas

  • Hidalgo

  • Michoacán

  • Nuevo León

  • Sonora

  • Tamaulipas

  • Veracruz

  • Zacatecas

S. tubifera Cav.

  • = S. excelsa Benth.

  • = S. monochila Donn. Sm.

  • = S. venosa Fernald.

  • = S. longiflora Willd.

NS

  • Hidalgo

  • Guerrero

  • Veracruz

S. verbenacea L. = S. vervenaca L. NS NS

NS = Not specified

Botanical characteristics

The different species of the Salvia genus have similar morphological characteristics [31]. Table 3 enlists some botanical characteristics reported by Ramamoorthy in 2001 [9], complemented by Lara-Cabrera [32]. Most of these species (75.5 %) are "perennial herbaceous" of 0.15 m (S. helianthemifolia Benth.) to 4 m (S. fulgens Cav.) and can be found at different altitudes ranging from 650 to 2400 meters. In the different species, the leaves vary in size from 5-8 mm to 50-140 mm long and have various shapes, from elliptical to ovate. The flowering time in plants is of great importance; it involves essential changes in metabolism and the translocation of nutrients, ensuring the production of seeds and, therefore, the survival of the species [33,34]. In the salvias studied, it was possible to document data on flowering times for 14 species, less than half (42.2 %) of the studied plants, and no pattern was observed in these data, so it is possible to find different species of Salvia in bloom throughout the year. The colours of the bilabiate calyx and the corolla are also diverse (red, pink, blue, lilac, and white), although the blue corolla is predominant (69.7 %). However, in at least nine species (27.3 %), the colour of the corolla can be variable. Habitat and altitude, among other abiotic and biotic environmental factors, can modify their physical or chemical characteristics, impacting the secondary metabolism's evolution and phenotypic plasticity [35].

Considering the similarity observed in the distinct Salvia species, it is essential and necessary to take special care in the taxonomic identification to avoid correlation errors and extrapolation [26], which could put in risk the reproducibility and continuation of pharmacological and chemical studies with these species [2,30]. The chemical composition varies between species, seasons, and habitats, as well as the stage of development or the plant organ (ontogeny of leaves, flowers, and fruits), factors that lead to significant qualitative differentiations where the composition can undergo significant changes. Some components can vary from traces (10 %) in the initial stages up to 50-70 % in the full bloom stage [36], which should be considered in phytochemical studies.

Table 3 Botanical characteristics of Salvia species from Valle de México. [10

Plant name Habitat Leaves Flowers Flowering Altitude range (meters) Vegetation
S. axillaris

  • Perennial-herbaceous

  • Ascending: NS

  • Sessile obovate to oblanceolate

  • Rounded apex

  • 7 - 12 x 30 - 45 mm

  • Bilabiate calyx

  • Corolla: Light lilac / white

NS 2400-2800

  • Grasslands

  • Bushes

  • Quercus forest

  • Juniperus forest

S. carnea

  • Perennial-herbaceous

  • Ascending: 0.5-1.5 m

  • Ovate

  • Acuminate apex

  • 30 - 90 x 20 - 60 mm

  • Bilabiate calyx

  • Corolla: Pink / White

Sep - May 2800-3500

  • Mountain mesophyll forest

  • Quercus forest

  • Pinus forest

  • Pinus-Quercus Forest

  • Abies forest

S. chamaedryoides

  • Herbaceous-perennial / subshrub

  • Ascending: 20-80 cm

  • Ovate to deltoid-elliptic

  • Rounded apex

  • 6 - 20 x 3 - 10 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2300-2800

  • Grassland

  • Bushes

  • Quercus forest

  • Juniperus forest

S. circinata

  • Perennial-herbaceous

  • Ascending: 30 cm-1.5 m

  • Ovate

  • Acumite apex

  • 30 - 100 x 12 - 45 mm

  • Bilabiate calyx

  • Corolla: Blue-purple/white

Aug - Nov 1650-2800

  • Grassland

  • Bushes

  • Disturbed Areas

S. concolor

  • Perennial-herbaceous

  • Ascending: 50 cm-2 m

  • Ovate to ovate-deltoid

  • Acuminate apex

  • 50 - 120 x 30 - 120 mm

  • Bilabiate calyx

  • Corolla: Dark blue.

Sep 2650-3300

  • Coniferous forest

  • Mesophilic forest

S. elegans

  • Perennial-herbaceous

  • / Bushy

  • Ascending: 80 cm-2m

  • Ovate

  • Acute apex

  • 8 - 6 x 6 - 35 mm

  • Bilabiate calyx

  • Corolla: Red

NS 2550-3100

  • Mountain mesophyll forest

  • Abies forest

  • Pinus forest

  • Quercus forest

S. filifolia

  • Perennial-herbaceous

  • Ascending: ± 35 cm

  • Sessile

  • Lineal sometimes

  • Oblanceolate / narrowly-oblanceolate

  • Acute apex

  • 10 - 60 x 2 - 3 mm

  • Bilabiate calyx

  • Corolla: Blue

Jul - Nov 2390-2800

  • Encino deteriorated forest

  • Pinus forest

  • Quercus forest

S. fulgens

  • Arbustive

  • Ascending: 1-4 m

  • Ovate

  • Acute apex

  • 30 - 140 x 15 - 70 mm

  • Bilabiate calyx

  • Corolla: Deep red/white

NS 2650-3400

  • Mountain mesophyll forest

  • Juniperus forest

  • Mixed forest

  • Pinus-Encino Forest

S. gesneriiflora

  • Climbing shrub

  • Ascending: 80 cm-2.5 m

  • Ovate

  • RouNSed apex

  • 30 - 110 x 30 - 80 mm

  • Bilabiate calyx

  • Corolla: Red

Oct - May 1950-3200

  • Mesophyll forest

  • Quercus forest

  • Mixed forest

  • Coniferous forest

  • Pinus forest

  • Pinus-Quercus Forest

  • Shores of agricultural crops

S. helianthemifolia

  • Perennial-herbaceous

  • Ascending: 15-70 cm

  • Elliptic-orbicular

  • Rounded apex

  • 10 - 50 x 4 - 20 mm

  • Bilabiate calyx

  • Corolla: Blue

Aug - Apr 2000-3200

  • Mountain mesophyll forest

  • Quercus forest

  • Pinus forest

  • Pinus-Quercus Forest

  • Coniferous forest

  • Secondary scrub

S. hirsuta

  • Perennial-herbaceous

  • Ascending: 20-60 cm

  • Oblong-elliptic

  • Obtuse apex

  • 20 - 35 x 10 - 14 mm

  • Bilabiate calyx

  • Corolla: Blue

Jun - Oct 2250 - 2600

  • Grasslands

  • Scrubs

  • Disturbed areas

S. hispanica

  • Perenne

  • Ascending: 1 m

  • Ovate-lanceolate

  • Acuminate apex

  • 30 - 60 x 10 - 20 mm

  • Bilabiate calyx

  • Corolla: Purple/blue

Sep - Nov 2050-2500

  • Quercus forest

  • Tropical deciduous forest

  • Mixed forest

S. keerlii

  • Bushy

  • Ascending: 1-3.5 m

  • Ovate

  • Acute-obtuse apex

  • 20 - 40 x 7 - 30 mm

  • Bilabiate calyx

  • Corolla: Blue to purple/white

Jul - Dec 2170-3100

  • Quercus forest

  • Juniperus forest

  • Pinus-Quercus Forest

  • Juniperus-quercus forest

  • Submontane xerophytic scrubland

S. laevis

  • Perennial-herbaceous

  • Ascending: 30-70 cm

  • Lanceolate-oblong-lanceolate

  • Acute apex

  • 25 - 80 x 3 - 12 mm

  • Bilabiate calyx

  • Corolla: Blue

Jun - Nov 1520 -3200

  • Quercus forest

  • Xerophytic scrubland

  • Abies forest

  • Pinus forest

  • Pinus-Quercus Forest

  • Mesophyll forest

  • Grasslands

  • Scrubs

S. lavanduloides

  • Perennial-herbaceous

  • Ascending: 50 cm-1 m

  • Elliptic

  • Acute apex

  • 30 - 90 x 6 - 15 mm

  • Bilabiate calyx

  • Corolla: Blue

Oct - May 1650 -3300

  • Mountain mesophyll forest

  • Quercus forest

  • Pinus-Quercus Forest

  • Mixed forest

  • Secondary vegetation

S. leucantha

  • Ascending: 45 cm-1 m

  • Lanceolate

  • Acute apex

  • 40 - 120 x 4 - 18 mm

  • Bilabiate calyx

  • Corolla: White and covered with purple hair

Sep - Dec 1000-2800

  • Pinus forest

  • Encino forest

  • Xerophytic scrublands

S. melissodora

  • Perennial-herbaceous

  • Arbustive

  • Ascending: 50 cm-2 m

  • Oval

  • Ovate-oblong / ovate-deltoid

  • Acute apex

  • 10 - 50 x 70 - 30 mm

  • Bilabiate calyx

  • Corolla: Blue-purple/white

Jul - Mar 1550 - 2600

  • Xerophytic scrubland

  • Slopes

  • Hill

S. mexicana

  • Perennial-herbaceous

  • Arbustive

  • Ascending: 50 cm-3 m

  • Ovate

  • Acuminate apex

  • 60 - 180 x 25 - 120 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2250 - 3000

  • Quercus forest

  • Pinus forest

  • Disturbed areas

S. microphylla

  • Arbustive

  • Ascending: 40 cm-1.5 m

  • Elliptic oval or deltoid

  • Acute to rounded apex

  • 10 - 70 x 4 - 30 mm

  • Bilabiate calyx

  • Corolla: Red

NS NS

  • Juniperus forest

  • Encino forest

  • Mixed forest

  • Evergreen forest

  • Pinus forest

  • Pinus-Encino Forest

  • Xerophytic scrubland

  • Grassland

S. misella

  • Perennial-herbaceous

  • Ascending: 50 cm-1.5 m

  • Opposite sessile/elliptic

  • Acuminate apex

  • 20 - 50 x 10 - 20 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 650-2250

  • Mountain mesophyll forest

  • Disturbed vegetation of tropical deciduous forest

  • The transition zone between the mountain mesophyll and encino forest

S. mocinoi

  • Perennial-herbaceous

  • Arbustive

  • Ascending: 50 cm-2 m

  • Ovate

  • Acute / acuminate apex

  • 15 - 55 x 6 - 28mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2400-2650

  • Mountain mesophyll forest

  • Pinus forest

  • Oak forest

S. moniliformis

  • Perennial-herbaceous

  • Ascending: 40 cm-1 m

  • Elliptic

  • Acute apex

  • 20 a 35 x 8 - 10 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2300-2800

  • Mountain mesophyll forest

  • Coniferous forest

  • Pinus forest

  • Oyamel forest

S. oreopola

  • Herbaceous

  • Ascending: ± 40 cm

  • Deltoid-ovate

  • Acute apex

  • 14 - 40 x 10 - 35 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2600

  • Pinus forest

S. patens

  • Perennial-herbaceous

  • Ascending: 30 cm-1 m

  • Ovate to ovate-deltoid

  • Acute apex

  • 50 - 140 x 40 - 120 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2500-2800

  • Quercus forest

S. polystachya

  • Perennial-herbaceous

  • Arbustive

  • Ascending: 50 cm-3.5 m

  • Ovate - elliptic

  • Acuminate apex

  • 30 - 140 x 20 - 70 mm

  • Bilabiate calyx

  • Corolla: Blue-violet/white

Jun.-Nov. 2250-2900

  • Encino forest

  • Pinus forest

  • Grassland

  • Secondary scrub

  • Disturbed areas

S. prunelloides

  • Perennial-herbaceous

  • Ascending: 15-40 cm

  • Rhomboid

  • Ovate-rhomboid / oblong

  • Acute to rounded apex

  • 7 - 60 x 7 - 27 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2400-3600

  • Coniferous forest

S. pulchea

  • Perennial-herbaceous

  • Arbustive

  • Ascending: 1-2 m

  • Ovate

  • Acute-acuminate apex

  • 25 - 140 x 25 - 60 mm

  • Bilabiate calyx

  • Corolla: Red

NS 2350-2400

  • Grassland

  • Xerophytic scrubland

S. reflexa

  • Perennial-herbaceous

  • Ascending: 20 cm-1 m

  • Oblong-elliptic / linear

  • Acute apex

  • 15 - 60 x 4 - 10 mm

  • Bilabiate calyx

  • Corolla: White

NS 2250-2600

  • Scrub

  • Disturbed areas

S. reptans

  • Perennial-herbaceous

  • Ascending: 30 cm-1 m

  • Linear or linear-oblong

  • Acute-rounded apex

  • 5 - 8 x 1 - 5 mm

  • Bilabiate calyx

  • Corolla: Purple/blue

NS 2300-2700

  • Pinus forest

  • Encino forest

  • Grassland

  • Scrub

  • Disturbed areas

S. stachyoides

  • Perennial-herbaceous

  • AsceNSing: 50 cm-1 m

  • Elliptic

  • Acute apex

  • 25 - 70 x 7 - 32 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2800-3100

  • Pinus forest

  • Grassland

S. tiliifolia

  • Perennial-herbaceous

  • Ascending: 20 cm-1.5 m

  • Ovate-orbicular

  • Acute apex

  • 10 - 50 x 10 - 50 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2300-2600

  • Ruderal weed

S. tubifera

  • Perennial-herbaceous

  • Ascending: ± 2 m

  • Ovate-orbicular

  • Acuminate apex

  • 50 - 160 x 40 - 110 mm

  • Bilabiate calyx

  • Corolla: Scarlet red

NS 2300

  • Xerophytic scrubland

S. verbenacea

  • Herbaceous

  • Ascending: ± 20 cm

  • Ovate-oblong

  • Rounded apex

  • 50 - 90 x 20 - 56 mm

  • Bilabiate calyx

  • Corolla: Blue

NS 2300 NS

NS: Not specified

Traditional uses and pharmacology

Regarding Traditional Medicine, Mexico is recognized as the second most important country in the world that uses that kind of therapy, with a tremendous ancestral tradition and richness in the use of medicinal plants to treat different diseases and for ritual, only right after China [37]. The different ethnic groups living in Mexico maintain deep and ancestral knowledge of medicinal plants as traditional practices and beliefs about diseases and cures [37]. This cultural legacy dates back to published works written in the 16th century and still survives in modern Mexico [38]. The use and knowledge of medicinal plants by the Mexican population is a common practice for three main reasons: 1) the need to treat diseases, 2) an extensive flora, and 3) the existence of many indigenous groups that preserve their traditions [39]. Unsurprisingly, the population turns to various species of Salvia to treat diverse ailments, given the botanical abundance and diversity these plants represent in Mexico.

Table 4 provides a detailed account of the ethnobotanical uses we have documented for the 33 Salvia species included in this study. Based on our data, we can infer that leaves are the most frequently employed part of various Salvia species. This preference arises due to the ease of leaf collection and the minimal impact on plant viability. In some cases, the complete plant, or other parts of the plant (roots and steam) used are specifically described. Comparing the metabolites expressed in different plant parts is essential to comprehensively understand metabolite synthesis. Investigating whether specific compounds are localized to certain plant regions or distributed uniformly across the entire plant represents a critical avenue for further research.

Of the 33 species registered in the Valle de México, 20 are used for everyday purposes, mainly S. verbenacea, S. polystachya, S. lavanduloides, and S. elegans (Fig. 2). These species' most frequently reported uses were gastrointestinal diseases, such as stomach pain and diarrhea. Notably, diarrhea remains a significant health problem in Mexico, ranking as the second most common ailment across all age groups [40]. Additionally, these Salvia species find application in promoting childbirth, managing gynecological issues (such as menstrual colic), and serving as antipyretic agents. Furthermore, they are utilized for wound treatment, diabetes management, and respiratory conditions (Table 4).

Pharmacological studies play an essential role in unraveling the therapeutic potential of medicinal plants. In the case of Salvia species, approximately 13 out of the 33 species (representing 39 %) have undergone pharmacological scrutiny involving investigations into extracts, fractions, and isolated compounds. A total of 28 distinct pharmacological effects have been documented, with notable prominence given to antioxidant, anti-bacterial, and anti-hyperglycemic properties. Among the studied species (Fig. 2), S. verbenacea stands out with 11 reported pharmacological activities, followed by S. polystachya (9 activities) and S. circinata (5 activities). The predominant mode of preparation for these species involves herbal infusions or tisanes, in which the bioactive compounds are extracted using water and heat [41].

Table 4 provides a comprehensive overview of pharmacological studies across diverse Salvia species. Notably, cytotoxic and anticancer activities emerge as promising avenues, offering new prospects for cancer treatment. Some species exhibit anti-bacterial, anti-fungal, and anti-parasitic effects. Other species are also used for treating fever, rheum, and edema, while their anti-inflammatory, antinociceptive, and antipyretic actions are similar to non-steroidal anti-inflammatory drugs (AINEs). The actions at the level of the nervous system, derived by their traditional uses of cultural connotation ("susto," "mal de ojo," "aire"), were recorded as anti-depressants, anxiolytics, and neuroprotective in different experimental conditions.

Interestingly, our pharmacological investigations align with the effects observed in traditional medicine. Specifically, many studies have focused on medicinal plant species' gastrointestinal and gynecological effects. However, it is crucial to emphasize that the number of research validating these plants' traditional uses is limited. For example, while 120 traditional uses have been documented for 20 species, only 42 specific studies have been conducted on 12 Salvia species (Fig. 3). Even more pertinent is that only a handful of these studies have developed into identifying the pure compounds responsible for those effects. Some species have yet to be studied; for example, based on this work, species such as S. filifolia and S. laevis lack pharmacological studies that support the attributed medicinal uses; furthermore, no specific compounds have been identified in these species.

Our comprehensive review underscores the imperative to validate the diverse traditional uses attributed to Salvia species. Certain species, such as S. polystachya and S. circinata, have been associated with hypoglycemic effects through the inhibition of α-glucosidases and sodium-dependent glucose cotransporter-1 (SGLT-1) [28,42]. Furthermore, Salvia species find application in hypertension management, with emerging evidence at the vascular level. However, studies supporting these effects in other Salvia species remain scarce and underscore the need for multidisciplinary research, including bioassay-guided studies, to validate all traditional uses.

Table 4 Medicinal uses and pharmacological effects of identified Salvia species from the Valle de México. 

Plant name Traditional use Part used Pharmacological effect Extract Ref.
Cp Ap L B S F R Sd Fr NS Ext Frt IC
S. axillaris Expectorant X [70]
S. chamaedryoides “Espanto” X Anti-bacterial X X X [71-72]
Abortive X Hypoglycemic X X X
“Aire” X
S. circinata “Espanto” X Anti-conceptive X X X [16,29, 71-75]
“Aire” X Anti-hyperglycemic X X
Analgesic X Anti-inflammatory X X
Anti-diabetic X Anti-MDR X
Diarrhea X X Cytotoxic X
Helminthiases X
Lack of appetite X
Menstrual colic X
Rheumatism X
Stomachache X
Ulcers X
Vomit X
S. elegans “Espanto” X X Anti-hypertensive X X [8,39, 71,72, 76-82]
“Mal de ojo” X Anti-depressant X
“Aire” X Anxiolytic X
“Aire” (in babies) X X X
Anxiety X
Cooling X
Cough X
Fever X
Injured feet X
Insomnia X X
Knocking / edema X X X X
Measles X X X
Pain in the knees X
Postpartum X X X X
Relapse of Ladies X
Sick shower X X X
Skin rashes X
S. elegans Stimulate saliva X [8,39, 71,72, 76-82]
Stomachache X X X
Vomit X
S. filifolia Deposition X [83]
S. fulgens “Fuegos” induced by fever X [39,72]
Sleeping draught X X
Sleeping draught (infants) X X X
S. gesneriiflora Diarrhea X Antioxidant X [40,76, 84,85]
Stomachache X Spasmolytic X
Anti-inflammatory X
S. hispanica Bile X Antioxidant X [4,39, 84]
Cathartic X
Cough X
Diarrhea X X
Expulsion of larvae / foreign bodies from the eyes X
Eye burns X
Labor pain X
S. hispanica Laxative X [4,39, 84]
Muscle pain X
Nutritional supplement X
Spit blood X
S. laevis Kidney diseases X [72,76, 86]
Promote conception X
S. lavanduloides “Torzón” X [39,72,79,81, 87]
“Aire” X
Alopecia X X
Anti-dysentery X X
Antipyretic X X
Bronchitis X X X
Coldness (children) X
Controlling vaginal bleeding X
Cough X X X
Diarrhea X
Fever X
S. lavanduloides Gallbladder condition X X X [39,72,79,81, 87]
Gynecological diseases X
Hemostatic X X
Oxytocic X X
Paralysis X
Stomachache X
Toothache X
Vomit X
Wash wounds X
Whooping cough X X
S. leucantha “Espanto” X Anti-bacterial X [4,39, 71,72, 76,87-89]
Abortive X X Cytotoxic X
“Aire” X X
Bile (courage) X
Chest/lung pain X X
Cough X
Kidney Diseases X X
S. leucantha Liver disease X X [4,39, 71,72, 76,87-89]
Matrix fall X
Menstrual colic X
Postpartum X
Relapse of ladies X
Stomachache X X
Stops menstruation X
S. melissodora Diarrhea X [79,90]
Pain X
S. mexicana Bile X Anti-inflammatory X [72,79,91,92].
Diarrhea X Antioxidant X
Menstrual colic X
Promote conception X
Stomachache X
S. microphylla “Empacho” X X X Anti-microbial X [39-40,72, 76,83, 84,89, 93,94]
“Espanto” X X X X
“Mal de ojo” X
S. microphylla “Aire” [39-40,72, 76,83, 84,89, 93,94]
Anti-dysentery X X
Bile X
Bone strengthening
Diarrhea X X
Earache X
Gynecological diseases X
Headache X
Insomnia X
Leg scald X
Menstrual colic X X
Nerves X
Postpartum baths X X
Promote conception X X
Stomachache X X
Waist pain X
S. misella Bruising X X Antioxidant X [39,95,96]
Erysipelas X X
Skin rashes X
Warts X X
Wash wounds X X
S. patens Children's restroom (3 months) X [77]
Infected wounds X
Joint heating X
S. polystachya Anti-abortion X Anti-protozoal X [39-40,72, 76,83, 84,89, 93,94]
Anti-diuretic X Anti-amoebic X
Anti-dysentery X Anti-giardial X
Anti-gastric X Anti-hyperglycemic X X X
Anti-hemorrhagic X Antioxidant X
Anti-malarial X Acts over dermal fibroblast expression X
Antipyretic X Protective (Cerebral ischemia) X
Scabies X α-Glucosidase Inhibitor X
S. polystachya Diarrhea X SGLT1 Inhibitor X [39-40,72, 76,83, 84,89, 93,94]
Diuretic X
Emollient X
Flu X
Gastritis X
Hair growth X
Headache X
Menstrual colic X
Nosebleed X X
Parasites X
Promote conception X
Purgative X X
Stomachache X
Wounds disinfect X
Wound healing X
S. reflexa Stomach affections X [72]
S. reptans Diarrhea X X X Anti-bacterial X X X [72,94]
Fever X
Stomachache X X X
Swelling X X
Twists X
Wound healing X
S. tiliifolia Abscesses X Neuroprotective X [39,91,92,95, 96,101]
Mumps X
Snake bite X
Vomit X
S. verbenacea Abscesses X X Anti-bacterial [20]
“Aire” X Anticancer
Anti-hypertensive X Anti-fungal
Antipyretic X Anti-hemolytic
Anti-rheumatic X Anti-hyperglycemic
Antiseptic X Anti-hypertensive
Anti-spasmodic X X Anti-leishmanial
S. verbenacea Anti-sweat X X Antioxidant [20]
Anxiety X Anti-parasitic
Astringent X X Immunomodulatory
Carminative X X Inhibitory effect of xanthine oxidase
Wound healing X X X X X Skin effect
Cooling X
Contusion X
Cough X
Dermatological X
Diabetes X
Digestive problems X X X
Disinfectant X X
Diuretic X
Fever X
Genitourinary X
Healing X
Healing of burns X X
S. verbenacea Insomnia X [20]
Laryngitis X
Menstrual colic X
Respiratory problems X
Stomachache X
Vulnerary X X
Wound treatment X
Wound eyes X

Cp = Complete plant; Ap = Aerial parts, L = leaf; B = Branch; S = Steam; F = Flower; R = Root; Sd = Seed; Fr = Fruit; NS = Not specified; Ext = Extract; Fr = Fraction; IC = Isolated compound

Fig. 2 Salvias traditionally more used and with more pharmacological studies. 

Fig. 3 More frequent traditional uses of Salvias and its most studied pharmacological effects. 

Phytochemical studies

During the 1980s and 1990s, several research groups in Mexico, led by Alfredo Ortega, Lydia Rodriguez-Hahn, and Baldomero Esquivel, initiated innovative research focused on identifying compounds from extracts of Mexican sages. These first studies laid the foundation for subsequent research due to the rich content of secondary metabolites, including terpenoids and flavonoids. [43-47]. The aerial parts of these Salvia species, especially the flowers and leaves, harbor phenolic compounds, including flavonoids and terpenoids (such as monoterpenoids, diterpenoids, and triterpenoids); interestingly, diterpenoids were predominantly localized in the roots [46].

In conjunction with other phytochemical studies, we compiled information in Table 5 from 56 sources that report on compounds from 20 Salvia species, resulting in a total of 315 identified compounds (Fig. 4). Among these, S. leucantha stands out with an impressive 92 reported compounds, followed closely by S. verbenacea (81 compounds) and S. circinata (34 compounds). Notably, 43 of these compounds are described in more than one species, highlighting β-sitosterol, as well as ursolic and oleanolic acids that were reported in 8 and 7 different species of Salvia, respectively, compounds that have been identified as the most common terpenes in the Salvia genus [45,46], evidencing the phylogenetic relationships in these species.

Phenolic compounds and terpenoids are the main components in fruits, vegetables, and various spices used for nutritional purposes [48]. Interestingly, the therapeutic active principles in several plant-derived medicinal extracts are also flavonoids and terpenoids [49,50]. In plants, terpenoids exhibit the most remarkable structural diversity, which includes diverse subclassifications. For example, the diterpenoids could be classified as clerodanes, kauranes, abietanes, or casbanes, to name a few [51]. They provide a chemical defense against environmental stress and a mechanism to repair wounds and injuries. In addition, mainly monoterpenes are usually responsible for the characteristic fragrance of many plants (pollinator attraction). On the other hand, high concentrations of terpenoids can be toxic and, therefore, constitute an essential weapon against herbivores and pathogens, such as anti-food or insecticides [44,51-54].

In recent years, there has been growing pharmacological interest in these compounds due to their diverse biological activities that can focus on the prevention and therapy of various diseases, as documented in various studies. Our research data further support this trend, revealing that many of the 315 compounds documented (Table 5) are terpenoids (mainly diterpenes, sesquiterpenes, and monoterpenes). While the phytochemical studies on Salvia species do not explicitly focus on identifying biological effects, some working groups have determined that diterpenes stand out mainly for their anti-inflammatory, antitumor, anti-diabetic, and antiviral activities. The monoterpenes show anti-microbial activity against pathogens such as Mycobacterium tuberculosis [55] and inhibit the growth of fungi such as Rhizoctonia solani [56]. For their part, sesquiterpenes have been shown to have a broad spectrum of biological activities that include anti-microbial, cytotoxic, anti-inflammatory, anti-bacterial, anticancer, antiviral, and anti-fungal properties, in addition to exerting effects on the central nervous and cardiovascular systems [57].

As previously mentioned, among the most reported compounds in these Salvias species are the pentacyclic triterpenes: the ursolic acid, a triterpenoid, is extensively studied and boasts a multitude of biological effects: it acts as an insulin mimetic, insulin sensitizer, anti-inflammatory, antioxidant, anticancer, anti-obesity, anti-diabetic, antiangiogenic, anti-microbial, cardioprotective, neuroprotective, hepatoprotective, anti-skeletal muscle atrophy and thermogenic [31,58-60]. Likewise, oleanolic acid, an isomer of ursolic acid, has effects such as hepatoprotective, anti-inflammatory, anti-hyperglycemic, antioxidant, anticancer, and neuroprotective [42,60,61]. Another noteworthy compound reported in various Salvias species is β-sitosterol, a phytosterol whose chemical structure is similar to cholesterol, which has diverse biological actions described that include anxiolytic, sedative, analgesic, angiogenic, anthelmintic, antimutagenic, immunomodulatory, anti-bacterial, anticancer, anti-inflammatory, genotoxic, hypolipidemic, hypocholesterolemic, hepatoprotective, and respiratory diseases; furthermore, β-sitosterol promotes wound healing and exhibits antioxidant and anti-diabetic effects [62,63].

Another important group of compounds in the Salvia species are the flavonoids, a class of polyphenolic compounds that are naturally biosynthesized in plants. The subgroups of flavonoids include flavones, flavonols, flavanones, flavanonols, anthocyanidins, flavanols, and isoflavones [64,65]. Flavonoids have long been known to be synthesized at specific sites. They are responsible for the color and aroma of flowers and fruits to attract pollinators, protect plants from different biotic and abiotic stresses, and act as unique UV filters, detoxifying agents, and defensive anti-microbial compounds [64-67]. These natural products are well known for their beneficial effects on health, such as anti-diabetic, antiulcer, antiviral, antioxidant, anti-inflammatory, antimutagenic, cytotoxic, and anticarcinogenic [64,65,68].

The diverse compounds described from the Salvia species (Fig. 4) are evidence of structural variability, mainly from the terpenoid structures, where a minimum change in the position or the presence and absence of some functional groups changes the type of compound reported. This, in turn, could generate a different activity that can be observed in biological assays [28]. Besides, some of the same compounds in different species could not be at the same concentration [30,69] and might affect the expected effect.

Table 5 Isolated compounds of Salvia species from Valle de México. 

Scientific name Parts used Extract(s) used No. Classification Compounds Ref..
S. axillaris

  • Aerial parts

  • Roots

Acetone 1 Terpenoid 20-nor-abietane cryptotanshinone (cryptotanshinone) [23, 102]
S. chamaedryoides Aerial parts Dichloromethane - - Furano diterpenes [22]
2 Terpenoid 7α-hydroxybacchotricuneatin A
3 Polyphenol Galdosol
4 Polyphenol Rosmanol
5 Terpenoid Salvimicrophyllin B
6 Terpenoid Splendidin C
7 Terpenoid Tilifodiolide
S. circinata

  • Aerial parts

  • Flowers

  • Leaves

Acetone: Methanol Ethyl acetate Hexane Methanol Aqueous 8 Terpenoid (E)-pinocarvyl acetate [18, 23, 29, 73, 103-105]
9 Flavonoid 2-(3,4-dimethoxy phenyl)-5,6-dihydroxy-7-methoxy-4H-chromen-4-one
10 Aromatic 3-methoxy-p-cymene
11 Flavonoid 5,6,4´-trihydroxy-7,3´-dimethoxyflavone
S. circinata Aerial parts Flowers Leaves

  • Acetone: Methanol

  • Ethyl acetate

  • Hexane

  • Methanol

  • Aqueous

12 Flavonoid 5,7-O-diacetylacacetin [18, 23, 29, 73, 103-105]
13 Flavonoid 6-hydroxy luteolin
14 Terpenoid Acetylamarissinin B
15-21 Terpenoid Amarisolide A-G
22-25 Terpenoid Amarissinins A-D
26 Flavonoid Apigenin
27 Flavonoid Apigenin-7-O-β-D-glucoside
28 Polyphenol Caffeic acid
29 Polyphenol Chlorogenic acid
30 Phenol Ferulic acid
31 Terpenoid Germacrene D
32 Flavonoid Iso-quercitrin
33 Terpenoid Oleanolic acid
34 Flavonoid Pedalitin
35 Flavonoid Phloretin
36 Flavonoid Phlorizin
37 Flavonoid Quercetin
38 Phenylpropanoid Rosmarinic acid
39 Flavonoid Rutin
40 Terpenoid Spathulenol
41 Terpenoid Teotihuacanin
42 Terpenoid Ursolic acid
43 Terpenoid α-amyrin
44 Terpenoid α-bourbonene
45 Terpenoid α-caryophyllene
46 Terpenoid β-caryophyllene
47 Terpenoid β-selinene
S. circinata

  • Aerial parts

  • Flowers

  • Leaves

  • Acetone: Methanol

  • Ethyl acetate

  • Hexane

  • Methanol

  • Aqueous

48 Terpenoid β-sitosterol [18, 23, 29, 73, 103-105]
49 Terpenoid δ-elemene
S. elegans

  • Flowers

  • Leaves

  • Seeds

Aqueous ethanol 50 Alcohol 2-propanol [8,80,82,106]
51 Flavonoid 3-acetoxy-7-methoxyflavone
52 Alcohol 3-octanol
53 Amino acid Cystine
31 Terpenoid Germacrene D
54 Terpenoid Hederagenin (3β,23-dihydroxyolean12-en-28-oic)
55 Terpenoid Linalool
56 Fatty acid Linoleic acid
57 Fatty acid Linolenic acid
58 Amino acid Lysine
59 Amino acid Methione
33 Terpenoid Oleanolic acid
40 Terpenoid Spathulenol
60 Aldehyde trans-3-hexenal
61 Terpenoid trans-ocimene
42 Terpenoid Ursolic acid
46 Terpenoid β-caryophyllene
S. fulgens Aerial parts Acetone 62 Terpenoid 10β-hydroxybacchotricuneatin A (Bacchotricuneatin A) [19, 23, 24, 107-110]
63 Terpenoid nt-19-acetoxy-15,16-epoxy-6-hydroxy-3,13(16),14-clerodatrien-18-al
64 Terpenoid ent-19-O-acetoxy-15,16-epoxy-3,13(16),14-clerodatrien-6,18-diol
65 Terpenoid 7α-hydroxy-neoclerodane-3,13-diene-18,19:15,16-diolide
S. fulgens Aerial parts Acetone 66 Terpenoid Dehydrokerlin [19, 23, 24, 107-110]
67 Terpenoid Salvifulgenolide
68 Terpenoid Salvigenolide
69 Terpenoid Sandaracopimaric acid
70 Terpenoid trans-1,2-dihydrosalvifaricin
48 Terpenoid β-sitosterol
S. gesneriiflora Aerial parts

  • Methanol

  • Hexane

  • Dichloromethane

- - Alkaloids [85, 111]
- - Anthraquinones
- - Coumarins
- - Saponins
28 Polyphenol Caffeic acid
29 Polyphenol Chlorogenic acid
38 Phenylpropanoid Rosmarinic acid
42 Terpenoid Ursolic acid
68 Terpenoid Salvigenolide
S. hirsute Roots Acetone 71 Terpenoid 14-deoxycoleon U [112]
72 Terpenoid 7α-acetoxy-royleanone
73 Terpenoid 8,11,13-abietatriene
74 Terpenoid 8,13-abietadiene
75 Terpenoid Cryptojaponol
76 Terpenoid Demethylcryptojaponol
77 Terpenoid Royleanone
78 Terpenoid Salviphlomone
79 Terpenoid Sugiol
80 Terpenoid Taxodione
S. hispánica Seeds

  • Ethanol

  • Methanol

  • Hydrochloric acid in ethanol

28 Polyphenol Caffeic acid [4, 113, 114]
29 Phenol Chlorogenic acid
81 Flavonoid Daidzin
82 Polyphenol Gallic acid
83 Flavonoid Kaempferol
84 Ethyl ester Protocatechuic ethyl ester
37 Flavonoid Quercetin
38 Phenylpropanoid Rosmarinic acid
85 Fatty acid α-linolenic acid
S. keerlii Aerial parts Acetone 86 Terpenoid Kerlin [23, 108, 115]
87 Terpenoid Kerlinic acid
88 Terpenoid Kerlinolide
S. lavanduloides

  • Aerial parts

  • Flowers Roots

  • Acetone

  • Methanol

72 Terpenoid 7α-acetoxy-royleanone [19, 23, 108, 111, 116-118]
89 Terpenoid Horminone
90-94 Terpenoid Salvianduline A-E
42 Terpenoid Ursolic acid
48 Terpenoid β-sitosterol
S. leucantha

  • Aerial parts

  • Flowers

  • Acetone

  • Chloroform

  • Methanol

  • Hexane

95 Terpenoid 1,10-di-epi-cubenol [19, 21, 24, 39, 76, 88, 89, 107, 118-120]
96 Terpenoid 1,8-cineole
97 Alcohol 1-octen-3-ol
98 Terpenoid 20-hydroxydugesin B
99 Terpenoid 2-epi-6,7-dihydrosalviandulin E
100 Terpenoid 3-epi-tilifodiolide
101 Ketone 3-octanone
102 Terpenoid 3β-methoxyisopuberulin
103 Ketone 4-methylene-isophorone
104 Terpenoid 6,7-dehydrodugesin A
S. leucantha Aerial parts Flowers Acetone Chloroform Methanol Hexane 105 Terpenoid 6,7-dehydrodugesin B [19, 21, 24, 39, 76, 88, 89, 107, 118-120]
106 Terpenoid 6,7-dihydrosalviandulin E
107 Terpenoid 7-epi-α-eudesmol
108 Aromatic Apiole
109 Terpenoid Aromadendrene
110 Terpenoid Bicyclogermacrene
111 Terpenoid Borneol
112 Terpenoid Bornyl acetate
113 Terpenoid Camphene
114 Terpenoid Cedrene
115 Terpenoid cis-cadin-4-en-7-ol
116 Terpenoid cis-muurola-3,5-diene
117 Terpenoid Citral
118 Terpenoid Citronellal
119 Terpenoid Citronellol
120 Ketone Dehydrosabinaketone
121 Terpenoid De-O-acetylsalvigenolide
122 Benzodioxol Dillapiol
123 Terpenoid Dugesin B
100 Terpenoid 3-epi-tilifodiolide
124 Terpenoid Eremoligenol
125 Terpenoid Eudesma-4(15)7-dien-1β-ol
126 Terpenoid Geraniol
127 Terpenoid Geranyl acetate
128-129 Terpenoid Germacrene A, B
31 Terpenoid Germacrene D
130 Terpenoid Globulol
S. leucantha

  • Aerial parts

  • Flowers

  • Acetone

  • Chloroform

  • Methanol

  • Hexane

131 Terpenoid Guaiol [19, 21, 24, 39, 76, 88, 89, 107, 118-120]
132 Alcohol Heptanol
133 Terpenoid Hinesol
134 Terpenoid Isocaryophyllene
135 Flavonoid Isosalipurpol
136 Terpenoid Isosalvipuberulin (Isopuberulin)
137 Terpenoid Isothujanol
139-142 Terpenoid Leucansalvialin F-J
55 Terpenoid Linalool
143 Terpenoid Linalyl acetate
144 Terpenoid Linalyl formate
145 Terpenoid neo-α-clovene
146 Aldehyde Nonanal
147 Terpenoid p-cymene
148 Flavonoid Quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside
90-94 Terpenoid Salvianduline A-E
149 Terpenoid Salvifaricin
150-153 Terpenoid Salvileucalin A-D
154 Terpenoid Salvileucantholide
155-158 Terpenoid Salvileucanthsin A-D
40 Terpenoid Spathulenol
159 Terpenoid Spiroleucantholide
160 Terpenoid Terpinen-4-ol
161 Terpenoid Terpinolene
7 Terpenoid Tilifodiolide
162 Terpenoid Tiliifolin C
163 Terpenoid t-muurolol
S. leucantha

  • Aerial parts

  • Flowers

  • Acetone

  • Chloroform

  • Methanol

  • Hexane

164 Terpenoid trans-calamenen-10-ol [19, 21, 24, 39, 76, 88, 89, 107, 118-120]
165 Terpenoid trans-calamenene
166 Terpenoid trans-β-farnesene
167 Terpenoid Viridiflorol
168 Terpenoid α-bulnesene
169 Terpenoid α-cadinene
170 Terpenoid α-cadinol
171 Terpenoid α-copaene
172 Terpenoid α-guaiene
173 Terpenoid α-humulene
174 Terpenoid α-muurolol
175 Terpenoid α-pinene
176 Terpenoid α-terpineol
177 Terpenoid β-acoradiene
178 Terpenoid β-atlantol
179 Terpenoid β-bourbonene
46 Terpenoid β-caryophyllene
180 Terpenoid β-copaen-4α-ol
181 Terpenoid β-elemene
182 Terpenoid β-gurjunene
183 Terpenoid β-phellandrene
184 Terpenoid β-pinene
185 Terpenoid β-thujone
186 Terpenoid γ-cadinene
187 Terpenoid γ-terpinene
188 Terpenoid δ-cadinene
49 Terpenoid δ-elemene
S. melissodora Aerial parts

  • Acetone

  • Ethyl acetate

189 Terpenoid 1-isopropyl-4b,8,8-trimethyl-9-oxo-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-2,3,10-triyl triacetate [19, 23, 108, 122, 123]
190 Terpenoid 2α-hydroxy-7α-acetoxy-12-oxo-15:16-epoxy-neoclerodan-3,13(16),14-trien-18: 19-olide
191 Terpenoid 2β-7α-dihydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
192 Terpenoid 2β-acetoxy-7α-hydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
193 Terpenoid 2β-hydroxy-7-oxo-ent-cleroda-3,13-diene-18,19:16,15-diolide
194 Terpenoid 2β-hydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
195 Terpenoid 7-oxo-ent-cleroda-3,13-diene-18,19:16,15-diolide
196 Terpenoid 7α-acetoxy-2β-hydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
197 Terpenoid 7α-acetoxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
198 Terpenoid 7α-hydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
65 Terpenoid 7α-hydroxy-neoclerodane-3,13-diene-18,19:15,16-diolide
199 Terpenoid 7β-18,19-trihydroxy-ent-cleroda-3,13-dien-16,15-olide
200 Terpenoid 7β-hydroxy-ent-cleroda-3,13-diene-18,19:16,15-diolide
201 Terpenoid Brevifloralactone
202 Terpenoid Maytenoquinone
203 Terpenoid Melisodoric acid
33 Terpenoid Oleanolic acid
204 Terpenoid Portulide C
42 Terpenoid Ursolic acid
48 Terpenoid β-sitosterol
S. mexicana

  • Aerial parts

  • Flowers

  • Leaves

  • Acetone Chloroform

  • Hexane Methanol

205 Terpenoid Arbutin [92]
206 Terpenoid Betulinic acid
207 Terpenoid Betulinol
208 Terpenoid Salvimexicanolide
209 Terpenoid Salviolide
42 Terpenoid Ursolic acid
48 Terpenoid β-sitosterol
S. microphylla

  • Aerial parts

  • Leaves

  • Stems

  • Roots

Acetone 210 Terpenoid 12-methoxycarnosic acid [19, 25, 108, 124, 125]
211 Terpenoid 14α-18-dihydroxyisopimaradiene
212 Terpenoid 14α-hydroxyisopimaric acid
213 Phenolic ester 2-(p-hydroxyphenyl) ethyl eicosaheptanoic acid ester
214 Terpenoid 7,15-isopimaradien14α, 18-diol
215 Terpenoid 7-oxo-sandaracopimarate
216 Terpenoid 7-oxo-sandaracopimaric acid
217 Terpenoid 7α-acetoxyisopimara-8(14),15-diene-18-oic acid
218 Terpenoid 7α-acetoxysandaracopimaric acid
65 Terpenoid 7α-hydroxy-neoclerodane-3,13-diene-18,19:15,16-diolide
219 Terpenoid 7α-hydroxysandaracopimaric acid
220 Terpenoid 8(14),15-sandaracopimaradien-7α,18-diol
221 Carcocyclic 8α-hydroxy-β-eudesmol
222 Ester Eicosaheptanoic acid 2-(p-hydroxyphenyl) ethyl ester
223 Terpenoid Erithrodiol 3-acetate
224 Cumaric acid Hexacosylferulate
225 Terpenoid Lupeol
S. microphylla

  • Aerial parts

  • Leaves

  • Stems

  • Roots

Acetone 215 Terpenoid Methyl 7-oxosandaracopimarate [19, 25, 108, 124, 125]
226 Terpenoid Methyl 7α-hydroxysandaracopimarate
227 Terpenoid Microphyllandiolide
33 Terpenoid Oleanolic acid
5 Terpenoid Salvimicrophyllin B
228-230 Terpenoid Salvimicrophyllins A, C, D
220 Terpenoid Sandaracopimara-8(14),15-diene-7α,18-diol
42 Terpenoid Ursolic acid
231 Terpenoid β-eudesmol
48 Terpenoid β-sitosterol
S. patens Flowers Aqueous 232 Flavonoid Protodelphin [126]
S. polystachya

  • Aerial parts

  • Flowers

  • Leaves

  • Steams

  • Acetone

  • Acetone: Methanol

  • Ethanol

233 Terpenoid 15-epi-polystachyne G [17, 23, 42, 98, 100, 107]
234 Flavonoid 3',5,6,7-tetrahydroxy-4´-methoxyflavone
66 Terpenoid Dehydrokerlin
235 Terpenoid Linearolactone
33 Terpenoid Oleanolic acid
236-243 Terpenoid Polystachines A-H
149 Terpenoid Salvifaricin
244-247 Terpenoid Salvifilines A-E
42 Terpenoid Ursolic acid
S. reflexa Leaves Acetone 248 Terpenoid 15,16-epoxy-8α-hydroxyneocleroda-2,13(16),14-triene-17,12R:18,19-diolide [127]
249 Terpenoid 6β-hydroxysalviarin
250 Terpenoid 8α-hydroxysalviarin
S. reflexa Leaves Acetone 33 Oleanolic acid [127]
251 Terpenoid Salviarin
48 Terpenoid β-sitosterol
S. reptans

  • Aerial parts

  • Roots

  • Acetone

  • n-hexane

252 Terpenoid 1α,2α-epoxy-3,4α-dihydrolinearolactone [23, 19, 93, 108, 128]
253 Terpenoid 8α,9α-epoxy-7-ketoroyleanone
254 Terpenoid Diosmetin
89 Terpenoid Horminone
235 Terpenoid Linearolactone
33 Flavonoid Oleanolic acid
255 Terpenoid Salvireptanolide
42 Terpenoid Ursolic acid
48 Terpenoid β-sitosterol
S. tiliifolia

  • Aerial parts

  • Roots

Acetone 104 Terpenoid 6,7-dehydrodugesin A [76, 101, 23, 108, 129, 130]
256-257 Terpenoid Dugesins A, B
258 Phenol Ferruginol
136 Terpenoid Isosalvipuberulin (Isopuberulin)
259 Terpenoid Puberulin
94 Terpenoid Salvianduline E
149 Terpenoid Salvifaricin
260 Terpenoid Salvifolin
261 Terpenoid Salyunnanins I
262 Terpenoid Tilifolidione
S. verbenacea

  • Fruits

  • Leaves

  • Roots

  • Seeds

  • Steams

  • Essential oils

  • Methanol

  • Petroleum ether

263 Aldehyde (E)-2-hexenal [23]
264 Terpenoid (E)-caryophyllene
265 Terpenoid (E)-β-caryophyllene
266 Terpenoid (E)-β-farnesene
267 Terpenoid (E)-β-ionone
S. verbenacea

  • Fruits

  • Leaves

  • Roots

  • Seeds

  • Steams

  • Essential oils

  • Methanol

  • Petroleum ether

268 Terpenoid (E)-β-ocimene [23]
269 Carboxylic acid (Z)-9-octadecenoic acid
270 Terpenoid (Z)-β-ocimene
95 Terpenoid 1,10-di-epi-cubenol
96 Terpenoid 1,8-cineole
271 Terpenoid 13-epi-manool
272 Terpenoid 2,3-dihydro-1,4-cineol
273 Terpenoid 4-terpeniol
274 Flavonoid 5-hydroxy-3,4’,7-trimethoxyflavone
275 Flavonoid 5-hydroxy-7,4'-dimethoxyflavone
276 Terpenoid 6-13-hydroxy-7a- acetoxyroyleanone
277 Aldehyde 9,12,15-Octadecatrienal
26 Flavonoid Apigenin
278 Aromatic Benzaldehyde
110 Terpenoid Bicyclogermacrene
28 Polyphenol Caffeic acid
113 Terpenoid Camphene
279 Terpenoid Camphor
280 Terpenoid Carnosic acid
281 Terpenoid Caryophyllene oxide
282 Flavonoid Cirsilineol
283 Flavonoid Cirsiliol
116 Terpenoid cis-muurola-3,5-diene
184 Terpenoid cis-muurola-4(14),5-diene
164 Terpenoid E-Caryophyllene
181 Terpenoid epi-13-manool
S. verbenacea

  • Fruits

  • Leaves

  • Roots

  • Seeds

  • Steams

  • Essential oils

  • Methanol

  • Petroleum ether

185 Terpenoid epi-α-cadinol [23]
186 Acetate Ethyl hexadecanoate
30 Terpenoid Ferulic acid
31 Flavonoid Germacrene D
287 Flavonoid Hesperidin
288 Fatty acid Hexadecanoic acid
89 Terpenoid Horminone
289 Terpenoid Limonene
55 Terpenoid Linalool
56 Fatty acid Linoleic acid
290 Flavonoid Luteolin
291 Terpenoid Manool
292 Terpenoid Methyl carbonate
293 Fatty acid Methyl ester of 6-octadecenoic acid
294 Terpenoid Methyl eugenol
295 Flavonoid Naringenin
296 Alkane Nonane
297 Alkane Octane
298 Fatty acid Oleic acid
147 Terpenoid p-cymene
299 Aromatic Phenyl acetaldehyde
300 Aromatic p-hydroxybenzoic acid
301 Terpenoid Phytol
302 Flavonoid Retusin
38 Phenylpropanoid Rosmarinic acid
303 Terpenoid Sabinene
304 Flavonoid Salvigenin
S. verbenacea

  • Fruits

  • Leaves

  • Roots

  • Seeds

  • Steams

  • Essential oils

  • Methanol

  • Petroleum ether

305 Terpenoid Salvinine [23]
40 Terpenoid Spathulenol
80 Terpenoid Taxodione
161 Terpenoid Terpinolene
306 Terpenoid trans-sabinene hydrate
307 Alkane Tricosane
308 Terpenoid Tricyclene
309 Terpenoid Verbenacine
310 Flavonoid Verbenacoside
167 Terpenoid Viridiflorol
171 Terpenoid α-copaene
173 Terpenoid α-humulene
175 Terpenoid α-pinene
311 Terpenoid α-terpinyl acetate
312 Terpenoid α-thujene
46 Terpenoid β-caryophyllene
231 Terpenoid β-eudesmol
193 Terpenoid β-phellandrene
313 Terpenoid γ-amorphene
186 Terpenoid γ-cadinene
188 Terpenoid δ-cadinene
314 Terpenoid δ-selinene

Fig. 4 Chemical components from Salvia spp. from Valle de México. 

Conclusions

The several Salvia species in the Valle de México represent a vast plant resource with metabolites of pharmacological interest that play a significant role in Mexican Traditional Medicine. Salvia species represent a vast therapeutic use and have great potential for developing new bioactive compounds for treating diverse diseases due to the great variety of metabolites generated under diverse conditions, even in different populations of the same species. The data presented seek to promote research into these species through bio-assay-guided chemical studies that support their empirical use and the development of new herbal treatments. Enlarging the identification of new metabolites present in these plant species, taking into consideration that the variations of metabolites structures, the wide variety of Salvias and the poor study with some of them, could also generate new research opportunities in diverse areas of study. Finally, expanding the chemical, biological and pharmacological information might serve to develop methods of production of these plants, preserve them and improve their production and economic impact.

References

1. Tjitraresmi, A.; Moektiwardoyo, M.; Susilawati Y.; Shiono, Y. Sys. Rev. Pharm. 2020, 11, 324-333. [ Links ]

2. Manjarréz, R.; Frontana-Uribe, B. A.; Cárdenas, J. Rev. Soc. Quím. Méx. 2003, 47, 207-209. [ Links ]

3. Pérez, S.; De La, R.; Canavaciolo, G.; Victor, L.; Delange, M.; Rodríguez-Leyes, E. A. Rev. Cub. Plant. Med. 2011, 16, 54-59. [ Links ]

4. Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M. A. Food Chem. 2008, 107, 656-663. DOI: https://doi.org/10.1016/j.foodchem.2007.08.062. [ Links ]

5. Mendoza, E. I. O.; García, B. Y. B.; Cabrera, S. I. L. Acta Bot. Méx. 2017, 118, 7-40. [ Links ]

6. Sierra-Pérez, R.; González-Canavaciolo, V. L.; Marrero-Delange, D.; Rodríguez-Leyes, E. A. Revista CENIC: Ciencias Biológicas. 2013, 44, 124-127. [ Links ]

7. Kumar, P. M.; Sasmal, D.; Mazumder, P. M. Pharmacogn. Res. 2010, 2, 190-194. DOI: http://dx.doi.org/10.4103/0974-8490.65520. [ Links ]

8. Angerhofer, C. K. J. Nat. Prod. 2001, 64, 1258 DOI: 10.1021/np000756b [ Links ]

9. Ramamoorthy, T. P. in: Flora Fanerogámica del Valle de México, Rzedowski, G. C. de, Ed., Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, 2001, 632-644. [ Links ]

10. Cornejo-Tenorio, G.; Ibarra-Manríquez, G. Rev. Mex. Biodiv. 2011, 82, 1279-1296. DOI: http://dx.doi.org/10.22201/ib.20078706e.2011.4.668. [ Links ]

11. Villaseñor, J. L. Bot. Sci. 2004, 75, 105-135. DOI: http://dx.doi.org/10.17129/botsci.1694. [ Links ]

12. Martínez-Gordillo, M.; Lozada-Pérez, L. Brittonia. 2011, 63, 211-214. DOI: http://dx.doi.org/10.1007/s12228-010-9152-2. [ Links ]

13. Valdés, L.J.; Díaz, J.; Paul, A.G. J. Ethnopharmacol. 1983. 7, 287-312. DOI:10.1016/0378-8741(83)90004-1. [ Links ]

14. Tavera-Hernández, R.; Jiménez-Estrada, M.; Alvarado-Sansininea, J. J.; Huerta-Reyes, M. Molecules. 2023, 28, 8069. DOI: https://doi.org/10.3390/molecules28248069. [ Links ]

15. OECD. OECD Territorial Reviews: Valle de México, Mexico. OECD: 2015. [ Links ]

16. Castro, J. C. J.; Villa, R. N.; Ramírez G. S. A.; González, C. Rev. Cub. Plantas Med. 2014, 19, 101-120. [ Links ]

17. Ortega, A.; Bautista, E.; Maldonado, E. Chem. Pharm. Bull. 2006, 54, 1338-1339. DOI: http://dx.doi.org/10.1248/cpb.54.1338. [ Links ]

18. Salinas-Arellano, E.; Pérez-Vásquez, A.; Rivero-Cruz, I.; Torres-Colin, R.; González-Andrade, M.; Rangel-Grimaldo, M.; Mata, R. Molecules . 2020, 25, 3530. DOI: http://dx.doi.org/10.3390/molecules25153530. [ Links ]

19. Wu, Y. B.; Ni, Z. Y.; Shi, Q. W.; Dong, M.; Kiyota, H.; Gu, Y. C.; Cong, B. Chem. Rev. 2012, 112, 5967-6026. DOI: http://dx.doi.org/10.1021/cr200058f. [ Links ]

20. Khouchlaa, A.; Et-Touys, A.; Lakhdar, F.; Laasri, F. E.; El-Idrissi, A. E. Y.; Zaakour, F. Biointerface Res. Appl. Chem. 2021, 12, 1437-1469 [ Links ]

21. Li, L. W.; Qi, Y. Y.; Liu, S. X.; Wu, X. D.; Zhao, Q. S. Fitoterapia. 2018, 127, 367-374. DOI: http://dx.doi.org/10.1016/j.fitote.2018.03.007. [ Links ]

22. Bisio, A.; De Mieri, M.; Milella, L.; Schito, A. M.; Parricchi, A.; Russo, D.; Alfei, S.; Lapillo, M.; Tuccinardi, T.; Hamburger, M.; et al. J. Nat. Prod . 2017, 80, 503-514. DOI: http://dx.doi.org/10.1021/acs.jnatprod.6b01053. [ Links ]

23. Kabouche, A.; Kabouche, Z. Bioactive Nat. Prod. 2008, 753-833, DOI: https://doi.org/10.1016/S1572-5995(08)80017-8. [ Links ]

24. Narukawa, Y.; Fukui, M.; Hatano, K.; Takeda, T. J. Nat. Med. 2006, 60, 58-63. DOI: http://dx.doi.org/10.1007/s11418-005-0007-1. [ Links ]

25. Aydoğmuş, Z.; Yeşİlyurt, V.; Topcu, G. Nat. Prod. Res. 2006, 20, 775-781. DOI: http://dx.doi.org/10.1080/14786410500462843. [ Links ]

26. Bennett, B. C.; Balick, M. J. J. Ethnopharmacol . 2014, 152, 387-392. DOI: http://dx.doi.org/10.1016/j.jep.2013.11.042. [ Links ]

27. Rao, M. V. Curr. Sci. 2004, 87, 602-606. [ Links ]

28. Solares-Pascasio, J. I.; Ceballos, G.; Calzada, F.; Barbosa, E.; Velazquez, C. Molecules . 2021, 26, 947. DOI: http://dx.doi.org/10.3390/molecules26040947. [ Links ]

29. Flores-Bocanegra, L.; González-Andrade, M.; Bye, R.; Linares, E.; Mata, R. J. Nat. Prod . 2017, 80, 1584-1593. DOI: http://dx.doi.org/10.1021/acs.jnatprod.7b00155. [ Links ]

30. Sepúlveda-Cuellar, L.; Duque-Ortiz, A.; Yáñez-Espinosa, L.; Calzada, F.; Bautista, E.; Pastor-Palacios, G.; García, B. Y. B.; Flores-Rivas, J.; Badano, E. I.; Douterlungne, D. Rev. Bras. Farmacogn. 2021, 31, 676-688. DOI: http://dx.doi.org/10.1007/s43450-021-00168-z. [ Links ]

31. Rouhan, G.; Gaudeul, M. Methods. Mol. Biol. 2014, 1115, 1-37. DOI: http://dx.doi.org/10.1007/978-1-62703-767-9_1. [ Links ]

32. Lara-Cabrera, S. I.; Bedolla-García, B. Y.; Zamudio, S.; Domínguez-Vázquez, G. Acta Bot. Mex. 2016, 116, 107-149. DOI: http://dx.doi.org/10.21829/abm116.2016.1120. [ Links ]

33. Ionescu, I. A.; Møller, B. L.; Sánchez-Pérez, R. J. Exp. Bot. 2016, 68, 369-382. DOI: http://dx.doi.org/10.1093/jxb/erw427. [ Links ]

34. Chailakhyan, M. K. Ann. Rev. Plant. Physiol. 1968, 19, 1-37. DOI: http://dx.doi.org/10.1146/annurev.pp.19.060168.000245. [ Links ]

35. Kessler, A. Curr. Opin. Insect. Sci. 2015, 8, 47-53. DOI: http://dx.doi.org/10.1016/j.cois.2015.02.002. [ Links ]

36. Figueiredo, A. C.; Barroso, J. G.; Pedro, L. G.; Scheffer, J. J. C. Flavour Fragr. J. 2008, 23, 213-226. DOI: http://dx.doi.org/10.1002/ffj.1875. [ Links ]

37. Cruz-Pérez, A.L.; Barrera-Ramos, J.; Bernal-Ramírez, L. A.; Bravo-Avilez. D.; Rendón-Aguilar B. J. Ethnobiol. Ethnomed. 2021, 17, 7. DOI: http://dx.doi.org/10.1186/s13002-020-00431-y. [ Links ]

38. Mata, R.; Figueroa, M.; Navarrete, A.; Rivero-Cruz, I. Prog. Chem. Org. Nat. Prod. 2019, 108, 1-142. DOI: http://dx.doi.org/10.1007/978-3-030-01099-7_1. [ Links ]

39. Zolla, C.; Argueta, A. Biblioteca digital de la medicina tradicional mexicana; Landsteiner Scientific, Comisión Nacional para el Desarrollo de los Pueblos Indígenas, Programa Universitario México Nación Multicultural, Universidad Nacional Autónoma de México: México. 2009. http://www.medicinatradicionalmexicana.unam.mx/index.php. [ Links ]

40. Calzada, F.; Bautista, E. J. Ethnopharmacol . 2020, 253, 112676. DOI: http://dx.doi.org/10.1016/j.jep.2020.112676. [ Links ]

41. Sousa, A. C.; Pádua, I.; Gonçalves, V. M. F.; Ribeiro, C.; Leal, S. Heliyon. 2024, 10, e28779. DOI: http://dx.doi.org/10.1016/j.heliyon.2024.e28779. [ Links ]

42. Ortega, R.; Valdés, M.; Alarcón-Aguilar, F. J.; Fortis-Barrera, Á.; Barbosa, E.; Velazquez, C.; Calzada, F. Plants. 2022, 11, 575. DOI: http://dx.doi.org/10.3390/plants11050575. [ Links ]

43. Harikrishnan, R.; Balasundaram, C., in: The Role of Phytoconstitutents in Health Care, Megh, R. G., Ed., Apple Academic Press: Canada, 2020. 3-158. DOI: https://doi.org/10.1201/9780429284267. [ Links ]

44. Yazaki, K.; Arimura, G. I.; Ohnishi, T. Plant Cell Physiol. 2017, 58, 1615-1621. DOI: http://dx.doi.org/10.1093/pcp/pcx123. [ Links ]

45. Jash, S. K.; Gorai, D.; Roy, R. Intern. J. Pharm. Sci. Res. 2016, 7, 4710. [ Links ]

46. Topçu, G. J. Nat. Prod . 2006, 69, 482-487. DOI: http://dx.doi.org/10.1021/np0600402. [ Links ]

47. Theis, N.; Lerdau, M. Int. J. Plant Sci. 2003, 164, S93-S102. DOI: http://dx.doi.org/10.1086/374190. [ Links ]

48. Wagner, K. H.; Elmadfa, I. Ann. Nutr. Metab. 2003, 47, 95-106. DOI: http://dx.doi.org/10.1159/000070030. [ Links ]

49. Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Cell Mol. Life Sci. 2008, 65(19), 2979-2999. [ Links ]

50. Chinou, I. Curr. Med. Chem. 2005, 12, 1295-1317. DOI: http://dx.doi.org/10.2174/0929867054020990. [ Links ]

51. Alves, A. L.V.; Da Silva, L. S.; Faleiros, C. A.; Silva, V. A.; Reis, R. M. Nat. Prod. Comm. 2022, 17. DOI: https://doi.org/10.1177/1934578X2211056. [ Links ]

52. Nagegowda, D. A.; Gupta, P. Plant Sci. 2020, 294, 110457. DOI: http://dx.doi.org/10.1016/j.plantsci.2020.110457. [ Links ]

53. Gurado, O. A. A.; Cuéllar, A. C. Rev. Cub. Plantas Med . 2008, 13. [ Links ]

54. Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Arch. Immunol. Ther. Exp. 2007, 55, 315-327. DOI: http://dx.doi.org/10.1007/s00005-007-0039-1. [ Links ]

55. Bueno-Sánchez, J. G.; Martínez-Morales, J. R.; Stashenko, E. Rev. Univ. Ind. Sant. Salud. 2009, 41, 231-235. [ Links ]

56. Vaillant, F. D.; Romeu, C. C.; Ramos, R. E.; González, G. M.; Ramírez, O. R.; González, P. J. Fitosanidad. 2009, 13, 197-200. [ Links ]

57. Ruiz-Reyes, E.; Suarez, M. Rev. CENIC Ciencias Biológicas. 2015, 46, 9-24. [ Links ]

58. Seo, D. Y.; Lee, S.R.; Heo, J. W.; No, M. H.; Rhee, B. D.; Ko, K. S.; Han, J. Korean J. Physiol. Pharmacol. 2018, 22, 235-248. [ Links ]

59. Kashyap, D.; Tuli, H. S.; Sharma, A. K. Life Sci. 2016, 146, 201-213. DOI: http://dx.doi.org/10.1016/j.lfs.2016.01.017. [ Links ]

60. Liu, J. J. Ethnopharmacol . 2005, 100, 92-94. DOI: http://dx.doi.org/10.1016/j.jep.2005.05.024. [ Links ]

61. Pollier, J.; Goossens, A. Phytochemistry. 2012, 77, 10-15. DOI: http://dx.doi.org/10.1016/j.phytochem.2011.12.022. [ Links ]

62. Babu, S.; Jayaraman, S. Biomed. Pharmacother. 2020, 133, 193-200. DOI: http://dx.doi.org/10.1016/j.biopha.2020.110702. [ Links ]

63. Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M. Eur. J. Med. Plants . 2014, 4, 590-609. [ Links ]

64. López, J. G. E. Curr. Med. Chem . 2019, 26, 6972-6975. DOI: http://dx.doi.org/10.2174/092986732639191213095405. [ Links ]

65. Samanta, A.; Das, G.; Das, S. K. Int. J. Pharm. Sci. Tech. 2011, 100, 12-35. [ Links ]

66. Panche, A. N.; Diwan, A. D.; Chandra, S. R. J. Nutr. Sci. 2016, 5, 1-15. DOI: http://dx.doi.org/10.1017/jns.2016.41. [ Links ]

67. Janicijevic, J.; Tosic, S.; Mitrovic, T. Proceeding of 9th symposium on flora of Southeastern Serbia and neighbouring regions. 2007, 153-156. [ Links ]

68. Tiwari, S.C.; Husain, N. Indian J. Sci. Res. 2017, 12, 193-196. [ Links ]

69. Janicsák, G.; Veres, K.; Zoltán, K. A.; Máthé, I. Biochem. Syst. Ecol. 2006, 34, 392-396. DOI: http://dx.doi.org/10.1016/j.bse.2005.12.004. [ Links ]

70. Noriega, J. M. Curso de Historia de Drogas, Ed., Oficina Tipográfica de la Secretaría de Fomento, México, 1902, 372-373. [ Links ]

71. Pérez, E. B. E. Lista de las plantas útiles del estado de Hidalgo. Ed., UAEH, Hidalgo, 2003. [ Links ]

72. Aguilar, A.; Camacho, J. R.; Chino, S.; Jácquez, P.; López, M. E. Herbario Medicinal del Instituto Mexicano del Seguro Social. Información Etnobotánica; Instituto Mexicano del Seguro Social, México, 1994. [ Links ]

73. Fragoso-Serrano, M.; Ortiz-Pastrana, N.; Luna-Cruz, N.; Toscano, R. A.; Alpuche-Solís, A. G.; Ortega, A.; Bautista, E. J. Nat. Prod . 2019, 82, 631-635. DOI: http://dx.doi.org/10.1021/acs.jnatprod.8b00565. [ Links ]

74. Moreno-Pérez, G. F.; González-Trujano, M. E.; Martínez-Gordillo, M. J.; San Miguel-Chávez, R.; Basurto-Peña, F. A.; Dorazco-González, A.; Aguirre-Hernández, E. Bot. Sci . 2019, 97, 355-365. DOI: http://dx.doi.org/10.17129/botsci.2187. [ Links ]

75. Moreno, U.V. Herbolaria y tradición en la región de Xico, Veracruz. Ed., Gobierno del Estado de Veracruz, Secretaría de Educación y Cultura, Consejo Veracruzano de Arte Popular, Universidad Veracruzana, Xalapa, Veracruz, 2004, 1-202. [ Links ]

76. Guzmán, G.O. Evaluación de la actividad antiinflamatoria y estudios quimiométricos de especies de Salvia de Xalapa, Veracruz y municipios aledaños [master’s thesis]. Universidad Veracruzana: México, 2014. [ Links ]

77. Molina, M. J. L.; Villanueva, R.; Fernández, N. R.; Siciliano, A. Polibotánica. 2012, 34, 259-291. [ Links ]

78. Jiménez-Ferrer, E.; Hernández-Badillo, F.; González-Cortazar, M.; Tortoriello, J.; Herrera-Ruiz, M. J. Ethnopharmacol . 2010, 130, 340-346. DOI: http://dx.doi.org/10.1016/j.jep.2010.05.013. [ Links ]

79. Bello, G. M. Á.; Salgado, G. R. Biológicas. 2007, 9, 126-138. [ Links ]

80. Herrera-Ruiz, M.; García-Beltrán, Y.; Mora, S.; Díaz-Véliz, G.; Viana, G. S. B.; Tortoriello, J.; Ramírez, G. J. Ethnopharmacol . 2006, 107, 53-58. DOI: http://dx.doi.org/10.1016/j.jep.2006.02.003. [ Links ]

81. Moreno, M.; Alvarado, F.D.; Mendoza C.R.; Basurto, P.M. Bot. Sci . 2006, 79, 79-87. [ Links ]

82. Mora, S.; Millán, R.; Lungenstrass, H.; Díaz-Véliz, G.; Morán, J.A.; Herrera-Ruiz, M.; Tortoriello, J. J. Ethnopharmacol . 2006, 106, 76-81. DOI: http://dx.doi.org/10.1016/j.jep.2005.12.004. [ Links ]

83. Hurtado-Rico, N. E.; Rodríguez-Jiménez, C.; Aguilar-Contreras, A. Polibotánica . 2006, 22, 21-50. [ Links ]

84. Calzada, F.; Bautista, E.; Yépez-Mulia, L.; García-Hernandez, N.; Ortega, A. Phytother. Res. 2015, 29, 1600-1604. DOI: http://dx.doi.org/10.1002/ptr.5421. [ Links ]

85. Gómez-Rivera, A.; González-Cortazar, M.; Gallegos-García, A. J.; Escobar-Ramos, A.; Flores-Franco, G.; Lobato-García, C. E. Afr. J. Trad. Compl. Altern. Med. 2018, 15, 72-82. [ Links ]

86. Navarro, P. L. D. C.; Avedaño, R. S. Polibotánica . 2002, 14, 67-84. [ Links ]

87. Aoyagi, Y.; Yamazaki, A.; Nakatsugawa, C.; Fukaya, H.; Takeya, K.; Kawauchi, S.; Izumi, H.; Salvileucalin, B. Org Lett. 2008, 10, 4429-4432. DOI: http://dx.doi.org/10.1021/ol801620u. [ Links ]

88. Jiang, Y. J.; Su, J.; Shi, X.; Wu, X. D.; Chen, X. Q.; He, J.; Shao, L. D.; Li, X. N.; Peng, L. Y.; Li, R. T. et al. Tetrahedron. 2016, 72, 5507-5514. DOI: http://dx.doi.org/10.1016/j.tet.2016.07.037. [ Links ]

89. Rajamanickam, M.; Kalaivanan, P.; Sivagnanam, I. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 264-268. [ Links ]

90. González-Elizondo, M.; López-Enríquez, I. L.; González-Elizondo, M. S.; Tena-Flores, J. A. Plantas medicinales del estado de Durango y zonas aledañas. Ed., IPN, México, 2004. [ Links ]

91. Domínguez-Vázquez, G.; Castro-Ramírez, A. E. Etnobiología. 2015, 2, 19-31. [ Links ]

92. Argumedo Delira, R.; Parra-Delgado, H.; Ramírez-Apan, M. T.; Nieto, C. A.; Martínez-Vázquez, M. Rev. Soc.Quím. Méx. 2003, 47, 167-172. [ Links ]

93. Molina, M. J. L.; Villanueva, R.; Fernández, N. R.; Siciliano, A. Polibotánica . 2012, 34, 259-291. [ Links ]

94. Martínez-Vázquez, M.; Miranda, P.; Valencia, N. A.; Torres, M. L.; Miranda, R.; Cárdenas, J.; Salmón, M. Pharm. Biol. 1998, 36, 77-80. DOI: http://dx.doi.org/10.1076/phbi.36.2.77.4611. [ Links ]

95. Hersch, M. Estado del desarrollo económico y social de los pueblos indígenas de Guerrero , Volumen 2; Universidad Nacional Autónoma de México PUMC: México, 2009. [ Links ]

96. Cavin, A.; Dyatmyko, W.; Hostettmann, K. Pharm. Biol . 1999, 37, 260-268. DOI: http://dx.doi.org/10.1076/phbi.37.4.260.5800. [ Links ]

97. Pineda-Ramírez, N.; Calzada, F.; Alquisiras-Burgos, I.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Ortiz-Plata, A.; Pinzón, E. E.; Torres, I.; Aguilera, P. Antioxidants. 2020, 9, 253. DOI: http://dx.doi.org/10.3390/antiox9030253. [ Links ]

98. Bautista, E.; Ortiz-Pastrana, N.; Pastor-Palacios, G.; Montoya-Contreras, A.; Toscano, R. A.; Morales-Jiménez, J.; Salazar-Olivo, L. A.; Ortega, A. J. Nat. Prod . 2017, 80, 3003-3009. DOI: http://dx.doi.org/10.1021/acs.jnatprod.7b00591. [ Links ]

99. Ramírez-Zea, G.; Chávez-Servia, J.L.; Archundia-Garduño, E.; López-Hernández, V. Salvias del Estado de México, una perspectiva general. Ed., Instituto de Investigación y Capacitación Agropecuaria, Acuícola y Forestal del Estado de México (ICAMEX), Secretaría de Desarrollo Agropecuario del Estado de México. Metepec, México, 2016. [ Links ]

100. Calzada, F.; Yepez-Mulia, L.; Tapia-Contreras, A.; Bautista, E.; Maldonado, E.; Ortega, A. Phytother. Res . 2010, 24, 662-665. DOI: http://dx.doi.org/10.1002/ptr.2938. [ Links ]

101. Fan, M.; Bao, Y.; Zhang, Z. J.; Zhang, H. B.; Zhao, Q. S. Fitoterapia . 2017, 123, 44-50. DOI: http://dx.doi.org/10.1016/j.fitote.2017.09.013. [ Links ]

102. Esquivel, B.; Calderón, J.; Flores, E.; Sánchez, A. A.; Rosas, R. R. Phytochemistry . 1997, 46, 531-534. DOI: http://dx.doi.org/10.1016/s0031-9422(97)00310-5. [ Links ]

103. Bautista, E.; Fragoso-Serrano, M.; Ortiz-Pastrana, N.; Toscano, R. A.; Ortega, A. Fitoterapia . 2016, 114, 1-6. DOI: http://dx.doi.org/10.1016/j.fitote.2016.08.007. [ Links ]

104. Bautista, E.; Fragoso-Serrano, M.; Toscano, R. A.; García-Peña, M. del R.; Ortega, A. Org. Lett. 2015, 17, 3280-3282. DOI: http://dx.doi.org/10.1021/acs.orglett.5b01320. [ Links ]

105. Maldonado, E.; Cárdenas, J.; Bojórquez, H.; Escamilla, E. M.; Ortega, A. Phytochemistry . 1996, 42, 1105-1108. DOI: http://dx.doi.org/10.1016/0031-9422(96)00147-1. [ Links ]

106. Marquina, S.; García, Y.; Alvarez, L.; Tortoriello, J. J. Nat. Prod. Commun. 2008, 3, 185-188. DOI: http://dx.doi.org/10.1177/1934578x0800300215. [ Links ]

107. Esquivel, B. Nat. Prod. Commun. 2008, 3, 989-1002. DOI: http://dx.doi.org/10.1177/1934578x0800300628. [ Links ]

108. Arnason, J. T.; Mata, R. Phytochemistry of Medicinal Plants , Ed., Springer, New York, NY, 1995. DOI: https://doi.org/10.1007/978-1-4899-1778-2. [ Links ]

109. Esquivel, B.; Cardenas, J.; Rodriguez-Hahn, L.; Ramamoorthy, T. P. J. Nat. Prod . 1987, 50, 738-740. DOI: http://dx.doi.org/10.1021/np50052a029. [ Links ]

110. Esquivel, B.; Cardenas, J.; Toscano, A.; Soriano-Garcia, M.; Rodriguez-Hahn, L. Tetrahedron . 1985, 41, 3213-3217. DOI: http://dx.doi.org/10.1016/s0040-4020(01)96672-4. [ Links ]

111. Mendoza-Espinoza, J. A.; Pena-Miranda, I.; Aarland, R. C.; Peralta-Gómez, S.; Sierra-Palacios, E.; García-Ocón, B. Indian J. Tradit. Knowle. 2016, 15, 62-67. [ Links ]

112. Hueso-Rodriguez, J.; Jimeno, M.; Rodriguez, B.; Savona, G.; Bruno, M. Phytochemistry . 1983, 22, 2005-2009. DOI: http://dx.doi.org/10.1016/0031-9422(83)80033-8. [ Links ]

113. Martínez-Cruz, O.; Paredes-López, O. J. Chromatogr. A. 2014, 1346, 43-48. DOI: http://dx.doi.org/10.1016/j.chroma.2014.04.007. [ Links ]

114. Sandoval-Oliveros, M. R.; Paredes-López, O. J. Agric. Food Chem . 2013, 61, 193-201. DOI: http://dx.doi.org/10.1021/jf3034978. [ Links ]

115. Rodríguez-Hahn, L.; García, A.; Esquivel, B.; Cárdenas, J. Can. J. Chem. 1987, 65, 2687-2690. DOI: http://dx.doi.org/10.1139/v87-445. [ Links ]

116. Maldonado, E.; Ángeles-Flores, M. de los.; Salazar, B.; Ortega, A. Phytochemistry . 1994, 37, 1480-1482. DOI: http://dx.doi.org/10.1016/s0031-9422(00)90438-2. [ Links ]

117. Maldonado, E.; Cardenas, J.; Salazar, B.; Toscano, R. A.; Ortega, A.; Jankowski, C. K.; Aumelas, A.; Van-Calsteren, M. R. Phytochemistry . 1992, 31, 217-220. DOI: http://dx.doi.org/10.1016/0031-9422(91)83039-n. [ Links ]

118. Ortega, A.; Cárdenas, J.; Toscano, A.; Maldonado, E.; Aumelas, A.; Van Calsteren, M. R.; Jankowski, C. Phytochemistry . 1991, 30, 3357-3360. DOI: http://dx.doi.org/10.1016/0031-9422(91)83209-4. [ Links ]

119. Aoyagi, Y.; Yamazaki, A.; Kato, R.; Tobe, F.; Fukaya, H.; Nishikawa, T.; Nakahashi, A.; Miura, N.; Monde, K.; Takeya, K. Tetrahedron Lett. 2011, 52, 1851-1853. DOI: http://dx.doi.org/10.1016/j.tetlet.2011.02.003. [ Links ]

120. Rojas, L. B.; Visbal, T.; Morillo, M.; de Rojas, Y. C.; Arzola, J. C.; Usubillaga, A. Nat. Prod. Commun. 2010, 5, 937-938.DOI: http://dx.doi.org/10.1177/1934578x1000500627. [ Links ]

121. Negi, A.; Javed, M. S.; Melkani, A. B.; Dev, V.; Beauchamp, P. S. J. Essent. Oil Res. 2007, 19, 463-465. DOI: http://dx.doi.org/10.1080/10412905.2007.9699953 [ Links ]

122. Esquivel, B.; Hernández, L. M.; Cárdenas, J.; Ramamoorthy, T. P.; Rodríguez-Hahn, L. Phytochemistry . 1989, 28, 561-566. DOI: http://dx.doi.org/10.1016/0031-9422(89)80051-2. [ Links ]

123. Esquivel, B.; Vallejo, A.; Gaviño, R.; Cárdenas, J.; Sánchez, A. A.; Ramamoorthy, T. P.; Rodriguez-Hahn, L. Phytochemistry . 1988, 27, 2903-2905. DOI: http://dx.doi.org/10.1016/0031-9422(88)80685-x. [ Links ]

124. Bautista, E.; Toscano, R. A.; Ortega, A. J. Nat. Prod . 2014, 77, 1088-1092. DOI: http://dx.doi.org/10.1021/np4009893. [ Links ]

125. Bautista, E.; Toscano, R. A.; Ortega, A. Org Lett . 2013, 15, 3210-3213. DOI: http://dx.doi.org/10.1021/ol401022c. [ Links ]

126. Takeda, K.; Yanagisawa, M.; Kifune, T.; Kinoshita, T.; Timberlake, C. F. Phytochemistry . 1994, 35, 1167-1169. DOI: http://dx.doi.org/10.1016/s0031-9422(00)94815-5. [ Links ]

127. Nieto, M.; Gallardo, O. V.; Rossomando, P. C.; Tonn, C. E. J. Nat. Prod . 1996, 59(9), 880-882. DOI: http://dx.doi.org/10.1021/np960515x. [ Links ]

128. Esquivel, B.; Esquivel, O.; Cárdenas, J.; Sánchez, A.; Ramamoorthy, T. P.; Toscano, R. A.; Rodríguez-Hahn, L. Phytochemistry . 1991, 30, 2335-2338. DOI: http://dx.doi.org/10.1016/0031-9422(91)83644-z. [ Links ]

129. Luis, J. G.; Quiñones, W.; Echeverri, F. Phytochemistry . 1994, 36, 115-117. DOI: http://dx.doi.org/10.1016/s0031-9422(00)97023-7. [ Links ]

130. Rodriguez-Hahn, L.; O’Reilly, R.; Esquivel, B.; Maldonado, E.; Ortega, A.; Cardenas, J.; Toscano, R. A.; Chan, T. M.; J. Org. Chem. 1990, 55, 3522-3525. DOI: http://dx.doi.org/10.1021/jo00298a026. [ Links ]

Received: May 22, 2024; Accepted: August 04, 2024; Published: September 30, 2024

*Corresponding author: Francisco Javier Alarcón-Aguilar, email: aaaf@xanum.uam.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License