SciELO - Scientific Electronic Library Online

 
vol.24 número1Identificación de compuestos bioactivos y características fisicoquímicas de la harina de cladodios de Nopalea cochenillifera (L.) Salm-DyckUso de cepas de Pycnoporus sanguineus para la producción de enzimas con potencial uso en la industria de la panificación índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Biotecnia

versión On-line ISSN 1665-1456

Biotecnia vol.24 no.1 Hermosillo ene./abr. 2022  Epub 13-Jun-2022

https://doi.org/10.18633/biotecnia.v24i1.1520 

Artículos

In vitro cytotoxic activity of bark extracts from Pinus durangensis Martinez and Quercus sideroxyla Bonpl

Actividad citotóxica in vitro de los extractos de Pinus durangensis Martinez y Quercus sideroxyla Bonpl

Marcela Soto-García1 

Martha Rosales-Castro2 

José Rubén García-Sánchez3 

María José Rivas-Arreola4  * 

1Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas-DMCU, C.P.32310. Ciudad Juárez, Chih., México.

2Instituto Politécnico Nacional, CIIDIR- Unidad Durango, Sigma 119 Fraccionamiento 20 de noviembre, C.P. 34220, Durango, Dgo. México.

3Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina del, Plan de San Luis y Diaz Mirón s/n, Col. Casto de Santo Tomas, Delegación Miguel Hidalgo, C.P. 113340, Ciudad de México, México.

4Universidad Iberoamericana Puebla Blvd. del Niño Poblano 2901 Col. Reserva Territorial Atlixcáyolt San Andrés Cholula, Puebla, México C.P. 72820.


Abstract

Nowadays, plants bioactive compounds represent a great potential for discovering novel drugs that could act in cancer treatment. Previous word reports that different pine and oak species possess cytotoxic activities against various cancer cell lines. The present study evaluated the phenolic profile and cytotoxic activities of crude and organic extracts from P. durangensis and Q. sideroxyla bark. Among ESI-MS identified compounds in extracts from both species, are taxifolin and procyanidin dimers. The cytotoxic activity was performed on MDA-MB-231 (breast cancer), HeLa (cervix cancer), MCF-10A (breast non-tumorous cell), and HSF-1184 (human skin fibroblast cells) by MTT assay. All extracts showed a dose-dependent cytotoxic effect against cancer cell lines and small or no activity against the non-tumorous cells. The results provide important information about the cytotoxic activity of bark extracts from P. durangensis and Q. sideroxyla. This strong cytotoxic effect represents an opportunity for the valorization of a by-product of the wood industry.

Keywords: Bark extracts; cytotoxicity; phenolic profile

Resumen

En la actualidad, los compuestos bioactivos de las plantas representan un gran potencial para descubrir un fármaco novedoso que pueda actuar en el tratamiento del cáncer. Se ha informado que diferentes especies de pino y roble poseen actividades citotóxicas contra varias líneas celulares cancerosas. En el presente estudio, se evaluó el perfil fenólico y las actividades citotóxicas de extractos crudos y orgánicos de la corteza de P. durangensis y Q. sideroxyla. Algunos compuestos, como la taxifolina y dimeros de procianidina, fueron identificados en extractos de ambas especies mediante ESI-MS. La actividad citotóxica se realizó en MDA-MB-231 (cáncer de mama), HeLa (cáncer de cuello uterino), MCF-10A (células no tumorales de mama) y HSF-1184 (células de fibroblastos de piel humana) mediante ensayo MTT. Todos los extractos mostraron un efecto citotóxico dependiente de la dosis contra las líneas celulares cancerosas y poca o ninguna actividad contra las no tumorales. Los resultados proporcionan información importante sobre la actividad citotóxica de extractos de corteza de P. durangensis y Q. sideroxyla. Este fuerte efecto citotóxico representa una oportunidad para la valorización de un subproducto de la industria de la madera.

Palabras clave: Extractos de corteza; citotoxicidad; perfil fenólico

Introduction

Breast and cervix cancer are the most common cancer-related death cause among females worldwide. Thus, it is crucial to search for newer therapies that can help prevent and treat this illness, besides lessening the side effects of available therapies (Khosropanah et al., 2016; Saenglee et al., 2016). The use of medicinal plants in the treatment of diseases is increasing due to the benefits against chronic diseases like cancer, since plants have bioactive compounds, playing a vital role in the development of pharmaceuticals (Abdulla et al., 2014).

The therapeutic potential of medicinal plants generally associates to the antioxidant activity of phytochemicals, mainly phenols and flavonoids, closely linked to their ability to suppress cancer cells’ growth through reduced oxidative stress (Marvibaigi et al., 2016). However, the cellular mechanisms by which the phenols elicit these anticancer effects are multifaceted (Sorice et al., 2016).

Q. sideroxyla and P. durangensis are forest timber species in Mexico. Their primary non-timber uses are for edible harvesting seeds and even as medicine in the treatment of disorders like ulcers and inflammatory problems (Bermejo and Pontones 1999; Luna et al., 2003). Previous studies reported antibacterial effects, high phenolic content, and antioxidant properties in P. durangensis extracts (Rosales-Castro and González-Laredo, 2003; Rosales-Castro et al., 2006). Extracts from Q. sideroxyla have shown hypoglycemic and genotoxic effects, amelioration of oxidative stress evaluated in a murine model, high antioxidant capacity, anti-inflammatory effects, and anticarcinogenic activity in rat colon (Moreno-Jimenez et al., 2015; Soto-García et al., 2016). The main bioactive compound of these species identified is flavan-3-ols in Q. sideroxyla (Rosales et al., 2012), and flavonoids like taxifolin and quercetin in P. durangensis (Soto-García and Rosales-Castro, 2016).

Many investigations reported catechin, taxifolin, and quercetin as compounds with cytotoxic activities (Moreira et al., 2013; Evacuasiany et al., 2014; Moreno-Jimenez et al., 2015; Alzaharna et al., 2017; Rameshthangam and Chitra, 2017). Thus, this research aimed to determine the cytotoxic activities of polyphenolic extracts from P. durangensis and Q. sideroxyla bark against MDA MB-231, MCF 10A HeLa, and HSF-1184 cell lines.

Methods

Plant material

The bark collection was in January 2014 in Pueblo Nuevo, Durango, México. María Del Socorro Gonzalez Elizondo (taxonomist) identified the samples, and botanical specimens deposited at the Herbarium in CIIDIR-IPN, Durango, with vouchers number 42842, 428443, 42844 for Q. sideroxyla and 93, 97, 99, 100, 101 for P. durangensis. The bark preparation consisted in a mixture to make a unique sample, drying at room temperature, milled (mesh 40), and finally stored at 4 °C in paper bags until further use.

Extracts preparation and purification

The bark powder (10 g) was twice soaked with 50% ethanol (ethanol/water 50:50 v/v) (2 x 300 mL) with stirring at room temperature for 24 h, then filtered through a Whatman filter paper no. 1. The extracts were combined, filtered, and then vacuum evaporated at 40 °C until ethanol was removed. A portion of the remaining aqueous extract was dried and identified as crude extract (CE); the other portion went through a liquid partition process with ethyl acetate (3 x 100 mL). The organic phase was vacuum evaporated at 40 °C and identified as the organic extract (OE).

ESI-MS analysis

To obtain the P. durangensis and Q. sideroxyla OE spectra, we used a micrOTOF-QII mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ionization source (ESI). The parameters were set as capillary 2700 V, nebulizer pressure 1.2 bar, dry gas flow 11 L/min, and dry gas temperature 200 °C and the sample ran in the negative ion mode. The scan range was from 50 to 3000 m/z.

Cytotoxic evaluation

Cell lines and culture conditions

Human breast cancer (MDA-MB-231), human cervical cancer (HeLa), and non-cancer (MCF-10A and H-1184) cell lines were from the American Tissue Culture Collection (ATCC, USA). The cultures of HeLa, MCF-7, MDA-MB-231, and H-1184 cells were in DMEM high glucose (Gibco Lab, Grand Island, NY) in 10% (MDA-MB-231 was 5%) bovine fetal serum and antibiotic 1X (streptomycin/penicillin 10000 U/mL, Gibco LabGrand Island, NY). The culture of MCF-10A was in DMEM/F12 medium with 10% bovine fetal serum, incubated at 37 °C in a humid atmosphere of 5% CO2.

Cytotoxic assay

The cytotoxic assay was measured using MTT (3-(4,5-dimethylth-iazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Each cell line was plated in 96-well plates at a density of 1 × 104 cells/well and incubated for 24 h (37 °C, 5% CO2 air humidified) to allow them to adhere to the plate. Different concentrations of the CE and OE from P. durangensis and Q. sideroxyla were prepared (from the stock solution) and added to the culture medium to treat the cells, and cells incubated for another 72 h under the same conditions, using cells without treatment as a negative control. At the end of the experimental period, 100 μL of MTT dissolved in medium (5 mg/mL) were added to each well and incubated for another 2.5 h. Then, the medium was removed, the formazan crystals dissolved in 150 μL DMSO, and the absorbance measured at 550 nm in a spectrophotometer (Sinergy Biotek Instruments, Winooski, VT). In order to determine viability and the concentration leading to 50% inhibition of the viability, the determination of IC50 was by regression analysis using the following equation:

% Viability = Abs treated cells / Abs control cells × 100 Statistical analysis

The results reported are as the mean and the standard deviation (SD) of at least two independent experiments. The data analysis was by One-way analysis of variance (ANOVA), followed by post-hoc Turkey test, using a significance level of α ≤ 0.5 to determine statistical significance. The statistical analysis software used for these analyses was Statistica 7.

Results and discussion

The characterization of organic extracts (OE) from P. durangensis and Q. sideroxyla was by the analysis of the major peaks identified based on elution order, and that of all compounds was by interpreting their mass spectra obtained by the HPLC-ESI-MS, considering previously reported data. Figure 1 (A and B) shows the total ion chromatogram (TIC) of extracts from species studied. Several investigations reported cytotoxic effects of some Pine and oaks species on different cell lines that were related to compounds with the biological activities (Şöhretoğlu et al., 2012; Moradi et al., 2016; Li et al., 2016; Yang et al., 2016; Amessis-Ouchemoukh et al., 2017; Sarmeili et al., 2017).

Fig. 1 Total ion chromatogram. (A) OE from P. durangensis. 11= Procyanidin dimer, 16= (+)-Catechin/(-)-Epicatechin, 25= Dihydroquercetin (Taxifolin), 40= Myricetin, 70= Kaempferol; (B) OE from Q. sideroxyla. 6= Procyanidin dimer, 10= Procyanidin dimer B1, 12= (+)-Catechin/(-)-Epicatechin; Procyanidin dimer, 13= (+)-Catechin/(-)-Epicatechin.
Fig. 1. Cromatografia de iones totales. (A) OE de P. durangensis. 11= Dimero de procianidina, 16= (+)-Catequina/(-)-Epicatequina, 25= Dihidroquercetina (Taxifolina), 40= Miricetina, 70= Kaempferol; (B) OE de Q. sideroxyla. 6= Dimero procianidina, 10= Dimero procianidina B1, 12= (+)-Catequina/ (-)-Epicatequina; dinero Procianidina, 13= (+)-Catequina/(-)-Epicatequina. 

Table 1 shows the main constituents of pine bark, where the compounds of the peaks 11, 12, 15, 16, 25, 36, 40, 41, and 58 coincide with compounds recently reported by Rosales (2017) in P. durangensis bark, demonstrating the presence of flavonoids like procyanidins and the abundance of taxifolin. Other TIC peak constituents were compared with the relevant literature in order to obtain a tentative identification (most studies on compounds of Pinus and Quercus bark) finding: kaempferol and eriodictyol ([M-H]- 285 and 287 respectively; De la Luz Cádiz-Gurrea et al., 2014), taxifolin-o-hexoside ([M-H]- 465; Cretu et al., 2013), β-hydroxypropiovanillone glucoside ([M-H]- 357; Karonen et al., 2004), HHDP-galoyl-glucose ([M-H]- 357; Fernández et al., 2009), trigalloyl glucose ([M-H]-635; Mucilli et al., 2017), (Epi)catechin-3-O-glucoside-gallate ([M-H]- 603; Jiménez-Sánchez et al., 2015), t-caftaric acid ([M-H]- 311; Pardo-García et al., 2014).

Table 1 Compounds identified by ESI-MS in the P. durangensis bark organic extract.
Tabla 1. Identificación de compuestos por ESI-MS en extractos orgánicos de corteza de P. durangensis

# Peak RT (min) Mass [m/z]- Suggested compound
11 2.6 577.1320 Procyanidin dimer
12 2.7 289.0699 (+)-Catechin/(-)-Epicatechin
15 3.3 577.1321 Procyanidin dimer
15 3.3 865.1916 Procyanidin trimer
16 3.5 289.0706 (+)-Catechin/(-)-Epicatechin
16 3.5 579.1490 Catechin dimer
19 3.9 465.1041 Taxifolin-O-hexoside
25 4.6 303.0506 Dihydroquercetin (Taxifolin)
34 5.9 633.1210 HHDP-galoyl-glucose
36 6.1 317.0616 Myricetin
36 6.1 635.1369 Trigalloyl glucose
39 6.5 287.0539 Eriodictyol
40 6.9 317.0639 Myricetin
40 6.9 635.1369 Trigalloyl glucose
41 7.1 331.0448 Pinomyricetin (myricetin-6Me)
50 8.7 357.1330 b-hydroxypropiovanillone glucoside
58 9.9 301.0679 Quercetin
58 9.9 603.1440 (Epi)catechin-3-O-glucoside-gallate
70 11.6 285.0759 Kaempferol
77 12.5 311.1854 t-caftaric acid
79 12.9 293.1740 Unknown

The polyphenolic profiles of Q. sideroxyla shown in Table 2 includes procyanidin dimer of catechin/epicatechin compounds (peaks 6, 10, 12, and 13) which is, by far, the dominant polyphenols in bark extract from this species, also reported in previous studies (Rosales et al., 2012). Other compounds present in the extract also compared with previously reported literature, resulted in the tentative identification of constituents such as Quercetin 3-O-glucoside and t-caftaric acid ([M-H] - 463 and 311 respectively; Pardo-García et al., 2014), Ellagic acid-rhamnoside ([M-H]-447; Santos et al., 2013) gallic acid hexoside ([M-H]- 331; Lorenz et al., 2016), taxifolin ([M-H]- 303; Rosales et al., 2017). Other unknown compounds reported in barks detected in both extracts are also included ([M-H] - 293; Mämmelä et al., 2000).

Table 2 Compounds identified by ESI-MS in the Q. sideroxyla bark organic extract.
Tabla 2. Identificación de compuestos por ESI-MS en extractos orgánicos de corteza de Q. sideroxyla

# Peak RT (min) Mass [m/z]- Suggested compound
6 2.6 577.1319 Procyanidin dimer
7 2.7 289.0702 (+)-Catechin/(-)-Epicatechin
10 3.2 577.1323 Procyanidin dimer B1
12 3.5 289.0704;579.1489 (+)-Catechin/(-)-Epicatechin; Procyanidin dimer
13 3.7 289.0702 (+)-Catechin/(-)-Epicatechin
14 3.8 577.1307 Procyanidin dimer
15 4.0 463.0873 Quercetin 3-O-glucoside
18 4.2 447.0920 Ellagic acid-rhamnoside
21 4.6 303.0498 Dihydroquercetin
37 8.2 331.2490 Gallic acid hexoside
57 12.5 311.1848 t-caftaric acid
59 12.9 293.1736 Unknow

In previous studies, we have identified some of the major phenolic compounds of crude P. durangensis and Q. sideroxyla bark extracts by HPLC-DAD (Soto-Garcia and Rosales-Castro, 2016); these results, together with those obtained in this research, confirm the reproducibility of their bioactive compounds in bark extracts, like catechin in both species.

The P. durangensis and Q sideroxyla CE and OE bark cytotoxic effects were also evaluated on a cell line from human breast carcinoma, estrogen receptor-negative (ER-) MDA-MB-231, and cervix carcinoma cell line HeLa. Non-tumorous MCF-10A and HSF-1184 cells, used as controls, allowed comparing the effects produced by the extracts in healthy and tumor cells.

Results showed that crude extract and organic extract of both species have cytotoxic activity on cancer cell lines growth. A concentration-dependent manner (Fig. 2 A, B, C), becomes statistically different (p≤ 0.05) between treated and untreated cells (MDA-MB-231 and HeLa cell lines), nevertheless they were not cytotoxic to the non-tumorous HSF-1184 cell line.

Fig. 2 Cytotoxic effect of P. durangensis and Q. sideroxyla bark extracts on cells. (A) HeLa cells, (B) MDA-MB-231 cells, (C) HSF-1184 cells and (D) MCF-10A. Percent cell survival in the control group (untreated cells) assumed as 100. Results are expressed as the mean ± SD of two independent experiments (n=4). Significant difference *p ≤ 0.05 versus the control group.
Fig. 2. Efecto citotoxico de los extractos de corteza de P. durangensis y Q. sideroxyla sobre las celulas. (A) Celulas HeLa, (B) Celulas MDA-MB-231, (C) Células HSF-1184 y (D) células MCF-10A. El porcentaje de supervivencia celular en el grupo de control (células no tratadas) se asumió como 100. Los resultados se expresan como la media ± DE de dos experimentos independientes (n = 4). Diferencia significativa * p ≤ 0.05 frente al grupo de control. 

The crude extracts showed a slight reduction in cell viability on normal breast MCF-10A cells, 20 % approximately (Fig. 2 D), even at the higher applied doses. These results indicate that the P. durangensis and Q. sideroxyla extracts preferentially reduced the growth of the tumoral cell while not affecting the healthy cell line. The role of phenolic compounds in the extracts is essential, since it has been observed that polyphenols such as catechins induce apoptotic cell death in MDA MB-231 cell lines but not in normal cells (MCF 10-A) (Farhan et. al., 2016). The CE of both species presents catechin in their compounds, explaining the selective effect on MCF-10A.

Several investigations reported that the effects obtained on cell proliferation relate to dose and cell type, implying a different sensitivity by different cell lines (Gezer et al., 2015; Anlar et al., 2016). It has also been reported that the selective activity of cytotoxic compounds against healthy (MCF- 10A) and tumor cells is due to a broad spectrum of mechanisms responsible for the resistance. These include differences in the subcellular localization of Bik and differences in mitochondrial-mediated apoptosis that explain the sensibility exerted by the bark extracts from P. durangensis and Q. sideroxyla in the cell lines (Studzinska-Sroka et al., 2016).

IC50 determination provides further clarification of both species’ crude and organic extracts behavior in different cell lines (Table 3). It shows that organic extracts of both species have a major cytotoxic effect on MDA-MB-231 and HeLa cells, maybe due to the concentration of metabolites exerted by solvent. Previous results report that compounds such as taxifolin and procyanidins, the most abundant present in each of the extracts, play a fundamental role in their cytotoxic activity, inducing apoptosis on upregulating the expression of the proteins in HeLa and MDA-MB-231 cells (Amalinei et al., 2014).

Table 3 IC50 for P. durangensis and Q. sideroxyla bark extracts on cancer cell lines and non-tumorigenic cells.
Tabla 3. IC50 de los extractos de P. durangensis y Q. sideroxyla sobre la viabilidad de líneas celulares cancerosas y no tumorales. 

Cell lines
Extract IC50 µg/mL
HeLa MDA-MB-231 HSF-1184 MCF-10A
P. durangensis CE 210.30±6.75a 77.34±4.06a ND ND
P. durangensis OE 201.50±٨.٢٩a 37.49±0.95c ND ___
Q. sideroxyla CE 184.03±7.83b 46.83±0.73b ND ND
Q. sideroxyla OE 103.64±3.87c 32.82±5.54c ND ___

ND: not detected within the investigated concentration range. Means ± SD in each column followed by different letters are statistically different by Tukey test p≤0.05.

The abundance of catechins and the synergy with other metabolites within the phenolic profile of Q. sideroxyla could be why it showed the highest cytotoxic activity compared to P. durangensis. In addition, there is evidence that flavonoids that possess C2-C3 unsaturated bond and a carbonyl group at position 4 exhibit lower IC50. These two functional groups may increase the compound’s activity by affording more stable flavonoid radicals via conjugation and electron delocalization (Sadeghi-Aliabadi et al., 2012).

Several investigations reported cytotoxic effects of some Pinus and oaks species on different cell lines that were related to compounds with the biological activities (Şöhretoğlu et al., 2012; Li et al., 2016; Moradi et al., 2016; Yang et al., 2016; Amessis-Ouchemoukh et al., 2017; Sarmeili et al., 2017).

Conclusions

Quercus and Pinus species studies are intense due to their antioxidant and anti-inflammatory, antimicrobial, and anticancer potential; however, studies on the phenolic profile is scarce, and is associated with the reported effect. This work demonstrated that the phenolic profile and the concentration of specific metabolites such as the procyanidin dimer of catechin/epicatechin compounds was determinant in the cytotoxic activity evaluated in the cell lines used. Q. sideroxyla OE showed a potent cytotoxic activity compared to CE and OE from P. durangensis. This strong cytotoxic effect represents an opportunity for the valorization of the wood industry by-products, suggesting that OE of Q. sideroxyla may represent a good alternative in the search for new agents of natural origin to treat mammary and cervix cancer. Nevertheless, more in vitro and in vivo studies are necessary in order to understand and establish the mechanism of action.

Acknowledgments

The authors are grateful to María del Socorro González Elizondo for the identification of the study species.

References

Abdullah, A. S. H., Mohammed A. S., Abdullah R., Mirghani M.E.S., Al-Qubaisi M. 2014. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complementary and alternative medicine. 14(1): 1-10. [ Links ]

Alzaharna, M., Alqouqa I., Cheung H. Y. 2017. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells. PLoS One. 12(2): e0171325. [ Links ]

Amalinei, R. L., Trifan A., Cioanca O., Miron S.D., Mihai C. T., Rotinberg P., Miron A. 2014. Polyphenol-rich extract from Pinus sylvestris L. bark--chemical and antitumor studies. Medical-Surgical Journal, 118(2): 551-557. [ Links ]

Amessis-Ouchemoukh, N., Ouchemoukh, S., Meziant ,N., Idiri, Y., Hernanz, D., Stinco, C. M. 2017. Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Industrial Crops and Products.95: 6-17. [ Links ]

Anlar, H. G., Bacanli M., Kutluk B., Ahmet, Başaran N. B. 2016. Cytotoxic Activity of Resveratrol in Different Cell Lines Evaluated by MTT and NRU Assays. Turkish Journal of Pharmaceutical Sciences. 13(1): 27-34. [ Links ]

Bermejo, B., Pontones J. B. 1999. Los pinos mexicanos y su utilización como especies introducidas de alto potencial en varios países del mundo. Segundo Simposio sobre Avances en la Producción de Semillas Forestales en América Latina. CATIE. 8:249-253. [ Links ]

Cretu, E., Karonen, M., Salminen, J. P., Mircea, C., Trifan, A., Charalambous, V., Miron, A. 2013. In vitro study on the antioxidant activity of a polyphenol-rich extract from Pinus brutia bark and its fractions. Journal of Medicinal Food. 16(11): 984-991. [ Links ]

De la Luz Cádiz-Gurrea, M., Fernández-Arroyo, S., Segura-Carretero, A. 2014. Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS. International Journal of Molecular Sciences. 15(11): 20382-20402 [ Links ]

Evacuasiany, E., Ratnawati H., Liana L. K., Widowati W., Maesaroh M., Mozef T., Risdian C. 2014. Cytotoxic and antioxidant activities of catechins in inhibiting the malignancy of breast cancer. Oxididant and Antioxidants in Medical Science. 3(2): 141-146. [ Links ]

Farhan, M., Khan H.Y., Oves M., Al-Harrasi A., Rehmani N., Arif H., Ahmad A. 2016. Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins, 8(2): 37. [ Links ]

Fernandes, A., Fernandes I., Cruz L., Mateus N., Cabral M., De Freitas V. 2009. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L. Journal of Agricultural and Food Chemistry. 57(23): 11154-11160. [ Links ]

Gezer, C., Yücecan S., Rattan S. I. S. 2015. Artichoke compound cynarin differentially affects the survival, growth, and stress response of normal, immortalized, and cancerous human cells. Turkish Journal of Biology. 39(2): 299-305. [ Links ]

Jiménez-Sánchez, C., Lozano-Sánchez J., Gabaldón-Hernández J.A., Segura-Carretero A., Fernández-Gutiérrez A. 2015. RP-HPLC-ESI-QTOF/MS 2 based strategy for the comprehensive metabolite profiling of Sclerocarya birrea (marula) bark. Industrial Crops Products. 71: 214-234. [ Links ]

Karonen, M., Hämäläinen M., Nieminen R., Klika K. D., Loponen J., Ovcharenko V.V., Pihlaja K. 2004. Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E2. Journal of Agricultural and Food Chemistry. 52(25): 7532-7540. [ Links ]

Khosropanah, M. H., Dinarvand A., Nezhadhosseini A., Haghighi A., Hashemi S., Nirouzad F., Dehghani H. 2016. Analysis of the antiproliferative effects of curcumin and nanocurcumin in MDA-MB231 as a breast cancer cell line. Iranian Journal of Pharmaceutical Research. 15(1), 231. [ Links ]

Li, Y. Y., Feng J., Zhang X. L., Li M. Q., Cui Y.Y. 2016. Effects of Pinus massoniana bark extract on the invasion capability of HeLa cells. Journal of Functional. Foods. 24: 520-526. [ Links ]

Lorenz, P., Heinrich M., Garcia-Käufer M., Grunewald F., Messerschmidt V, Herrick A., Steinborn C. 2016. Constituents from oak bark (Quercus robur L.) inhibit degranulation and allergic mediator release from basophils and mast cells in vitro. Journal of Ethnopharmacology. 194: 642-650. [ Links ]

Luna-José, A. D. L., Montalvo-Espinosa L., Rendón-Aguilar B. 2003. Los usos no leñosos de los encinos en México. Boletín de la Sociedad Botánica de México. 72: 107-117. [ Links ]

Mämmelä, P., Savolainen, H., Lindroos, L., Kangas, J., Vartiainen, T. 2000. Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A. 891(1): 75-83. [ Links ]

Marvibaigi, M., Amini ,N., Supriyanto, E., Majid, F.A.A., Jaganathan, S.K., Jamil, S., Nasiri, R. 2016. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231. PLoS One . 11(7): e0158942. [ Links ]

Moradi, M. T., Karimi, A., Alidadi, S. 2016. In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chinese Journal of Natural Medicines. 14(3): 196-202. [ Links ]

Moreira, L., Araújo, I., Costa, Correia-Branco A., Faria, A., Martel, F., Keating, E. 2013. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Experimental Cell Research. 319(12): 1784-1795. [ Links ]

Moreno-Jiménez, M. R., Trujillo-Esquivel, F., Gallegos-Corona, M. A., Reynoso-Camacho, M. A., González-Laredo, R. F., Gallegos-Infante, J. A., Ramos-Gómez, M. 2015. Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1, 2-dimethylhydrazine. Food Chemical Toxicology. 80: 144-153. [ Links ]

Muccilli, V., Cardullo, N., Spatafora, C., Cunsolo, V., Tringali, C. 2017. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1 H NMR. Food Chemistry. 215: 50-60. [ Links ]

Pardo-García, A. I., Martínez-Gil, A. M., Cadahía, E., Pardo, F., Alonso, G. I., Salinas, M. R. 2014. Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Research International. 55: 150-160. [ Links ]

Rameshthangam, P. y Chitra, J. P. 2017. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. Journal of Materials Science &. Technology. 34(3): 508-522. [ Links ]

Rosales-Castro, M. y González- Laredo, R. F. 2003. Comparación del contenido de compuestos fenólicos en la corteza de ocho especies de pino. Madera y Bosques, 9: 41-49. [ Links ]

Rosales-Castro, M., Pérez López, M. E., Ponce Rodríguez, M. D. C. 2006. Propiedades antirradicales libres y antibacterianas de extractos de corteza de pino. Madera y Bosques , 12: 37-49. [ Links ]

Rosales-Castro, M., González-Laredo, R. F., Rocha-Guzmán N. E., Gallegos-Infante J. A., Rivas-Arreola, M. J., Karchesy, J. 2012. Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung. 66: 577-584. [ Links ]

Rosales-Castro, M., González-Laredo, R. F., Rivas-Arreola, M. J., Karchesy, J. 2017. Chemical analysis of polyphenols with antioxidant capacity from Pinus durangensis bark. Journal of Wood Chemistry and Technology. 37(5): 393-404. [ Links ]

Sadeghi-Aliabadi, H., Mosavi, H., Mirian, M., Kakhki, S., Zarghi, A. 2012. The Cytotoxic and Synergistic Effects of Flavonoid Derivatives on Doxorubicin Cytotoxicity in Hela, MDA-MB-231, and HT-29 Cancer Cells. Iranian Journal of Toxicology, 5(15): 558-564. [ Links ]

Saenglee, S., Jogloy, S., Patanothai, A., Leid, M., Senawong, T. 2016. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacological Reports. 68(2): 1102-1110. [ Links ]

Santos, S. A., Villaverde, J. J., Sousa, A. F., Coelho, J. F., Neto, C. P., Silvestre, A. J. 2013. Phenolic composition and antioxidant activity of industrial cork by-products. Industrial Crops and Products . 47: 262-269. [ Links ]

Sarvmeili, N., Jafarian-Dehkordi, A., Zolfaghari, B. 2016. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines. Research in Pharmaceutical Sciences, 11(6): 476-483. [ Links ]

Şöhretoğlu, D., Sabuncuoğlu, S., Harput, Ü. Ş. 2012. Evaluation of antioxidative, protective effect against H2O2 induced cytotoxicity, and cytotoxic activities of three different Quercus species. Food and Chemical Toxicology. 50(2): 141-146. [ Links ]

Sorice, A., Guerriero, E., Volpe, M.G., Capone, F., La Cara, F., Ciliberto, G., Costantini, S. 2016. Differential Response of Two Human Breast Cancer Cell Lines to the Phenolic Extract from Flaxseed Oil. Molecules. 21(3): 319-337. [ Links ]

Soto-García, M., Rosales-Castro, M., Escalona-Cardoso, G. N., Paniagua-Castro, N. 2016. Evaluation of Hypoglycemic and Genotoxic Effect of Polyphenolic Bark Extract from Quercus sideroxyla. Evidence-Based Complementary and Alternative Medicine. 4032618. [ Links ]

Soto-García, M. y Rosales-Castro, M. 2016. Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas. Ciencia y Tecnología, 18: 701-714. [ Links ]

Studzińska-Sroka, E., Piotrowska, H., Kucińska, M., Murias, M., Bylka, W. 2016. Cytotoxic activity of physodic acid and acetone extract from Hypogymnia physodes against breast cancer cell lines. Pharmaceutical Biology. 54(11): 2480-2485. [ Links ]

Yang, I. H., Shin, J. A., Kim, L. H., Kwon, K. H., Cho, S. D. 2016. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells. Journal of Clinical Biochemistry and Nutrition. 15-7. [ Links ]

Received: June 14, 2021; Accepted: October 26, 2021

*Autor para correspondencia: María José Rivas Arreola. Correo electrónico: mariajose.rivas@iberopuebla.mx

The authors declare that this work did not required human or animal experiments, no patient data appear in this article, and declare no conflicts of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License