SciELO - Scientific Electronic Library Online

 
vol.73 número2Relación exhumación-deformación cenozoica de la Serranía del Interior Occidental, Venezuela, mediante modelado termocinemático 2DDiscriminación de la relación precipitación-tectónica como agentes modeladores del paisaje en los alrededores del Municipio Guayabetal, Cordillera Oriental de Colombia índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Boletín de la Sociedad Geológica Mexicana

versión impresa ISSN 1405-3322

Bol. Soc. Geol. Mex vol.73 no.2 Ciudad de México ago. 2021  Epub 31-Ene-2022

https://doi.org/10.18268/bsgm2021v73n2a141220 

Artículos

Levantamiento orogénico alrededor del bloque Soapaga, Cordillera Oriental de Colombia: Inferencias de modelado termocinemático, geomorfología y sismicidad

Orogenic uplift around the Soapaga block, Eastern Cordillera of Colombia: Inferences from thermokinematic modeling, geomorphology and seismicity

Hilda Lucia Meléndez Granados1  * 

Mauricio A. Bermúdez1 

Helbert García-Delgado2 

Héctor Fonseca1 

María Isabel Marín-Cerón3 

1 Escuela de Ingeniería Geológica, Universidad Pedagógica y Tecnológica de Colombia.

2 Servicio Geológico Colombiano, Bogotá, Colombia.

3 Departamento de Ciencias de la Tierra, Universidad EAFIT, Colombia.


RESUMEN

El estudio de la historia de exhumación y levantamiento superficial de regiones montañosas son claves para comprender mejor los procesos de inversión tectónica. En esta contribución, se analiza la historia de exhumación del sector central de la Cordillera Oriental colombiana; esta región incluye las fallas inversas activas de Boyacá y Soapaga y otras fallas menores. Con el propósito antes mencionado, datos termo-cronológicos existentes fueron empleados para la realización de modelos termocinemáticos inversos 3D, siendo así posible comparar edades predichas versus observadas y estimar tasas de exhumación de los bloques tectónicos estudiados. Los resultados sugieren un patrón de exhumación asíncrono. De acuerdo con el modelo, el área entre las fallas de Boyacá y Soapaga, conocido como Macizo de Floresta, experimenta dos pulsos de exhumación a partir de 69.1 y 15.7 Ma con tasas de exhumación de 0.91 y 0.16 km/Ma, respectivamente. En contraste, en el bloque de la falla de Soapaga, un episodio de exhumación de 22.7 Ma fue discriminado a una tasa de 0.49 km/Ma. Este último sector coincidió con una importante deformación sísmica acumulada durante los últimos 5 Ma. Para el bloque colgante de la falla de Soapaga, el estudio de las relaciones magnitud-frecuencia de sismos permitió obtener un valor sísmico b de 0,55 ± 0,01, lo que concuerda con los mecanismos asociados a la tectónica transpresional. Sin embargo, el modelo termocinemático sugiere un rejuvenecimiento de la superficie entre 6 y 9 Ma en el bloque colgante situado al este de la Falla Soapaga. Con el propósito de analizar qué factores podrían generar ese rejuvenecimiento del relieve, se incorporaron al estudio otras variables como: datos de precipitación, índices de empinamiento o ksn, integral hipsométrica y relieve. Se encontraron importantes correlaciones entre el relieve y la deformación sísmica, y el relieve y el levantamiento sísmico, justo en la zona de mayor exhumación, lo que sugiere que las fuerzas tectónicas ejercen un mayor control sobre el relieve tanto a corto como a largo plazo. Además, se identificó una región sísmica muy activa para la zona de estudio que no había sido discriminada.

Palabras clave: historias tiempo-Temperatura; termocronología; modelamiento; exhumación; Cordillera Oriental

ABSTRACT

Studying the exhumation history and surface uplift in mountainous regions are key to understand how inversion orogens are built. In this contribution, we study the exhumation history on the central sector of the Colombian Eastern Cordillera; this region includes the Boyacá and Soapaga thrust faults and other minor faults. To reconstruct the exhumation history of this area, a compilation of existing thermochronological data was carried out. This data was used to perform inverse 3D thermal-kinematic modeling, to compare predicted versus observed ages and to estimate exhumation rates of tectonic blocks. The results suggest an asynchronous exhumation pattern. The area between the Boyacá and Soapaga faults experiences two exhumation pulses at 69.1 and 15.7 Ma with rates of 0.91 and 0.16 km/ Ma, respectively. In contrast, in the footwall block of the Soapaga fault, an exhumation episode of 22.7 Ma was discriminated at a rate of 0.49 km/Ma. This last sector coincided with a significant accumulated seismic uplift during the last 5 Ma, obtaining seismic uplift values between 70 and 100 m/Ma. Analysis of the relation magnitude-frequency of earthquakes allow us obtaining b-values for the hanging block of Soapaga fault of 0.55 ± 0.01, consistent with mechanisms associated to transpressional tectonics. However, the numerical model suggests a surface rejuvenation between 6 to 9 Ma for a sector of the study area. With the purpose of discriminating against other processes that could cause such rejuvenation, other variables were incorporated as precipitation data, normalized steepness index (ksn in rivers), hypsometric integral and relief. Strong correlations were discriminated between seismic relief and deformation, and seismic relief and uplift in the zone of greater exhumation, which suggests the tectonic forces exert a greater control on the relief in the short term as well as in the long term. Additionally, a highly active seismic region was identified for the study zone that had not been discriminated against.

Keywords: time-temperature history; thermochronology; thermal-kinematic modeling; exhumation; Eastern Cordillera

1. Introducción

En Colombia, específicamente en la Cordillera Oriental del sistema norandino, convergen importantes sistemas de fallas activas, entre los cuales se destacan el sistema rumbo-deslizante sinestral (Santa Marta-Bucaramanga), y las fallas inversas (Boyacá, y Soapaga); éstas dos últimas forman parte de la terminación sur del sistema de fallas de Santa Marta-Bucaramanga y definen el llamado Bloque Soapaga (ANH, 2008). El Bloque Soapaga con un área de aproximadamente 2272.3 km2 se localiza la Cordillera Oriental, en inmediaciones del departamento de Boyacá, Colombia. En este sector, se encuentra una importante sucesión Cretácica, la cual ha sido afectada por las fallas antes mencionadas. Estas fallas (Boyacá y Soapaga) separan sectores con distintos espesores de sedimentos Cretácicos. Los de menor espesor se encuentran en el bloque yacente de la Falla de Soapaga, en donde el espesor de los estratos del Valanginiano Superior al Maastrichtiano sólo alcanza 1500 m. Todo el bloque de Soapaga y sus alrededores constituye un área clave para la exploración de hidrocarburos en rocas del Cretácico, debido a que la materia orgánica no se ha sobremadurado como en otros sectores de la Cordillera Oriental (ANH, 2008).

Esto último ha motivado que durante los últimos años, se haya generado una gran cantidad de edades termocronológicas (Parra et al., 2009b; Mora et al., 2010; Ramírez-Arias et al., 2012; Saylor et al., 2012a, b; Silva et al., 2013) en una región de relativa complejidad debido a la convergencia de diversos sistemas de fallas (Falla de Bucaramanga, Falla de Soapaga y Falla de Boyacá) cuya interacción a lo largo del tiempo geológico es desconocida. La actividad de tales fallas y el efecto climático podría acelerar los procesos de advección de isotermas, lo cual se reflejaría en un incremento diferencial en las tasas de exhumación de bloques tectónicos delimitadas por fallas. La cuantificación de las tasas de erosión en estos bloques sólo es posible a través de modelado numérico termocinemático 3D inverso (Braun et al., 2006, 2012) en el cual se incorporan parámetros termales y flexurales locales. Esto es realmente novedoso como aplicación a lo largo de los Andes del Norte y permitiría el conocimiento detallado de la estructura termal de cualquier sector dentro de los Andes del Norte y cuencas sedimentarias adyacentes a la Cordillera Oriental de Colombia. El modelo inverso termocinemático existente más cercano (Andes de Mérida) fue presentado por Bermúdez et al., (2011). Con base en los datos de termocronología existentes, principalmente trazas de fisión en apatitos (o AFT por sus siglas en inglés) y (U-Th)/He en circón (Parra et al., 2009b; Mora et al., 2010; Saylor et al., 2012a, 2012b) se pretendió realizar la reconstrucción de la historia de exhumación del sector de la Cordillera Oriental donde confluyen las fallas de Boyacá y Soapaga, además de otros sistemas de fallas menores.

La Cordillera Oriental, es junto con los Andes de Mérida, las porciones más septentrionales de Los Andes del Norte de Suramérica. La cadena norandina ha sufrido dos procesos de deformación importantes que posiblemente ocasionaron los primeros pulsos de exhumación y posterior levantamiento de la Cordillera Oriental: 1) la acreción de material oceánico ocurrido desde el Mesozoico tardío al Cenozoico (Cediel et al., 2003) y 2) la intensa actividad tectónica que ha sufrido el área debido a la interacción de las placas Nazca, Caribe y Suramérica (e.g., Toro, 1990; Parra et al., 2009b; Mora et al., 2010). La Cordillera Oriental ha sido sobrecorrida h acia el este sobre el Escudo de Guayana, desarrollando una importante cuenca de antepaís hacia el este, conocida como la Cuenca Llanos (Toro, 1990, Bayona et al., 2013).

La geología expuesta de la Cordillera Oriental está dominada por rocas sedimentarias plegadas de edad mesozoica. A lo largo de la Cordillera Oriental, existen tres áreas donde el conjunto de rocas sedimentarias y metamórficas del Paleozoico son llamadas "macizos": 1) El Macizo de Quetame situado al este de Bogotá. 2) El Macizo de Santander, el cual representa la terminación norte de la Cordillera Oriental; la exhumación de este último guarda una estrecha relación con la Falla de Bucaramanga (van der Lelij et al., 2016; Amaya-Ferreira et al., 2017, 2020; Siravo et al., 2020), y finalmente, 3) el Macizo de Floresta, ubicado en la terminación sur de la falla antes mencionada. Conformado por rocas sedimentarias devónicas, y un plutón granítico paleozoico, el cual ha sido expuesto por las fallas de Soapaga y Boyacá (Tesón et al., 2013; Velandia et al., 2020).

Estas últimas se consideran como fallas de cabalgamiento relacionadas con la terminación sur de la falla rumbo-lateral sinestral de Bucaramanga (Boinet et al., 1989; Velandia y Bermúdez, 2018). Sin embargo, el carácter tectónico y la continuación de las fallas de Soapaga y Boyacá hacia el sur (Figura 1) no han sido todavía dilucidados (Velandia, 2005); además se desconoce el posible rol que podrían tener ambas fallas y otras menores presentes en la zona, sobre la exhumación de este sector de la Cordillera Oriental (Saylor et al., 2012a).

Figura 1 (A) Mapa geológico del área de estudio (Modificado de Gómez et al., 2015) y (B) Modelo de elevación digital ALOS a 30 m de resolución con fallas (Ulloa et al., 1998) y ubicación de las edades termocronológicas existentes (Parra et al. 2009b; Horton et al. 2010; Mora et al. 2010; Ramírez-Arias et al. 2012; Saylor et al. 2012b; Silva et al. 2013). 

Adicionalmente, la cuantificación de la exhumación, y el aporte de la sismicidad al levantamiento superficial de este sector de la Cordillera Oriental no se conoce en detalle y mucho menos si las tasas de exhumación se han venido incrementado en el tiempo geológico motivado a un aumento significativo de las condiciones climáticas o tectónicas. Con la finalidad de establecer la influencia de las fallas presentes en la zona de estudio, discriminar los tiempos de exhumación, las velocidades de exhumación y la creación de relieve, se utilizó el modelado numérico termocinemático (PECUBE, Braun, 2003; Braun et al., 2012).

Las tasas de exhumación y los tiempos proporcionados por el modelo son comparados con tasas de levantamiento sísmico derivados de los datos de sismicidad actual con el propósito de discriminar si hoy en día el levantamiento superficial se ha venido incrementando o si por el contrario se ha reducido o permanece constante. En los alrededores del Bloque Soapaga existe un importante relieve, así para discriminar los efectos del clima y/o tectónica como posibles agentes controladores del relieve actual se incorporan mediciones geomorfométricas y se realiza un estudio detallado de los distintos parámetros obtenidos en el área de estudio.

2. Descripción de área de estudio

El área de estudio se encuentra localizada en el sector central de la Cordillera Oriental colombiana, departamentos de Boyacá y Santander, área de influencia de las fallas de Boyacá y Soapaga con un área total de 1686 km2 (Figura 1). A continuación, se presenta el contexto geológico-estructural del área de estudio.

2.1. CONTEXTO GEOLÓGICO

La Cordillera Oriental está limitada al oeste por la cuenca intermontana del Valle del Magdalena y al este por la cuenca antepaís de los Llanos, infrayacida por el Cratón Amazónico (e.g., Horton et al., 2010). En esta cordillera, vastas exposiciones de basamento metamórfico continental de bajo a alto grado se encuentran ubicados en la zona axial tomando el rumbo de la cordillera, como los macizos de Santander y Floresta (e.g., Ramírez-Arias et al., 2012; Tesón et al., 2013). La Cordillera Oriental está conformada por rocas sedimentarias de origen marino depositadas durante el desarrollo de grabénes triásico-jurásicos, así como rocas no marinas depositadas durante el desarrollo de una cuenca retroarco durante durante el Tithoniano-Necomiano hasta el Maastrichtiano (e.g., Sarmiento-Rojas et al., 2006; Kammer y Sánchez, 2006). El acortamiento Cenozoico producto de la convergencia oblicua de las placas Suramericana, Nazca y Caribe se evidencia en múltiples fases de deformación transpresional asociadas a tectónica de piel gruesa y delgada que inicia en el Cretácico tardío (e.g., Acosta et al., 2004; Saylor et al., 2012a; Bayona et al., 2013) y cuyo pico de mayor actividad se presenta durante el Plioceno-Pleistoceno (e.g., Saylor et al., 2012a).

Estructuras representativas en el área de estudio pueden ser observadas en la figura 1, en particular el Macizo de Floresta, el cual está delimitado longitudinalmente por la Falla de Boyacá al noroccidente y la Falla de Soapaga al suroriente, ambas con rumbo SO-NE, aflorando allí rocas con edades que oscilan entre el pre-Ordovícico y el Neógeno (Manosalva et al., 2017). En el área del Macizo de Floresta, datos termocronológicos y de proveniencia sustentan deformación Eocena asociada al movimiento inicial de la Falla de Soapaga (Parra et al., 2009a, 2009b, Saylor et al., 2012a), mientras que, en el flanco oriental de la cordillera, la exhumación asociada a la deformación contraccional inició por lo menos hace ~25 Ma (Parra et al., 2009a, Mora et al., 2010).

El dominio axial de la cordillera consiste en anticlinales apretados y sinclinales amplios relacionados a fallas de doble vergencia, asociadas a estructuras de despegue o pliegues de rompimiento "break-thrust folds" (Mora et al., 2010). Las fallas de Soapaga y Boyacá son fallas inversas que actúan como terminación en cola de caballo al sur de la Falla Bucaramanga (Toro, 1990; Dengo y Covey, 1993; Velandia, 2005; Kammer y Sánchez, 2006; Tesón et al., 2013). Sin embargo, trabajos recientes sugieren que ambas estructuras fueron capturadas, e incluso son ligeramente desplazadas por la Falla de Bucaramanga después de su reactivación durante la Orogenia Andina (Velandia y Bermúdez, 2018).

3. Materiales y métodos

Con el objeto de cuantificar la historia de exhumación del área de estudio, se realizó una compilación de datos termocronológicos existentes (Horton et al., 2010, Mora et al., 2010; Ramirez-Arias et al., 2012, Parra et al., 2009b, Saylor et al., 2012b), así como información de la Agencia Nacional de Hidrocarburos (ANH), Servicio Geológico Colombiano (SGC) y parámetros flexurales y termales obtenidos de Dengo y Covey (1993), Gómez et al. (2005), Braun y Robert (2005), Pérez-Gussinyé et al. (2008) y van der Lelij et al., (2016), relacionadas con la Cordillera Oriental colombiana (Figura 1; ver referencias en tabla 1). Se compilaron los datos de sismicidad del catalógo del Servicio Geológico Colombiano (http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php) para el período de tiempo comprendido entre 1993 y 2017, considerando únicamente los eventos cuya profundidad es menor a 15 km. Finalmente, se utilizaron los datos satelitales de precipitación promedio anual de la Tropical Rainfall Mission Measurement (TRMM) para el período comprendido entre 1998 y 2009 (Bookhagen y Strecker, 2008). Este último conjunto de datos tiene una resolución horizontal de 4 km y una resolución vertical de 250 m. Este material está disponible gratuitamente en http://www.geog.ucsb.edu/-bodo/TRMM/#tif.

Tabla 1 Parámetros termales y flexurales fijos utilizados para los modelos termocinéticos (PECUBE). 

Parámetro Símbolo Valor Unidades
Espesor del modelo1 zo 40 km
Densidad de la Corteza2 ρc 2700 kg m-3
Densidad del manto2 ρm 3200 kg m-3
Capacidad calorífica3 C 1000 J kg-1K-1
Conductividad termal3 K 25 Wm-1K-1
Temperatura superficial T0 15 ºC
Tasa de variación atmosférica β 6 ºC km-1
Difusividad termal3 Κ 25 km2 Ma-1
Comienzo de la exhumación5 ts 100 Ma
Espesor elástico efectivo4 Te 30 km
Módulo de Young2 E 70 GPa
Coeficiente de Poisson2 v 0.25 Adimensional
Factor de amplificación de la topografía β 1 Adimensional

Los superíndices indican referencias para algunos parámetros. 1: Dengo y Covey (1993). 2: Gómez et al. (2005). 3: Braun y Robert (2005). 4: Pérez-Gussinyé et al. (2008). 5: van der Lelij et al. (2016).

Los datos termocronológicos fueron utilizados con dos propósitos: i) controlar la convergencia de los modelos termocinemáticos tridimensionales (PECUBE; Braun, 2003; Braun et al., 2012) y ii) calcular las tasas de erosión asumiendo que la topografía está en equilibrio mediante el uso del código Age2Edot (Brandon et al., 1998; Ehlers, 2005; Schildgen et al., 2018). Mientras que los datos sísmicos se emplearon para calcular la energía sísmica liberada, la deformación sísmica y el levantamiento sísmico (o deformación sísmica vertical). Para obtener las variables topográficas y de la red de drenaje, se utilizó un modelo digital del terreno (MDE) de la misión ALOS, el cual consta con una resolución de ~ 30 m por pixel (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm). A partir de este MDE, se extrajeron los índices de relieve local (R) y la Integral Hipsométrica (IH). En cuanto a los índices de la red de drenaje, se usó el MDE condicionado hidrológicamente para así reflejar de mejor manera la influencia de las lluvias en los procesos erosivos del paisaje. En las secciones subsiguientes se detallan de mejor manera estos procedimientos. Para cada sitio donde se dispone de una edad termocronológica, se construye una matriz con cada uno de los parámetros obtenidos y se discrimina los posibles controles tectónicos y/o climáticos sobre el relieve actual de la zona de estudio mediante un análisis de correlación de Pearson (Kendall y Stuart, 1973). A continuación se describen las bases de datos termocronológicas usadas, la base de datos de sismicidad compilada y cada uno de los métodos empleados en esta investigación.

3.1. DESCRIPCIÓN DE LA BASE DE DATOS TERMOCRONOLÓGICOS

En el presente trabajo se compilaron datos de distintos autores, los cuales son mostrados en la figura 1. En total, 75 edades reportadas en el área de estudio, y discriminadas de la siguiente forma: 15 edades obtenidas mediante el método de trazas de fisión en apatito (AFT), 13 edades de trazas de fisión en circón (ZFT), 1 edad (U-Th)/He en apatito (AHe), y 46 edades (U-Th)/He en circón (ZHe). Los datos fueron compilados a partir de los trabajos de Parra et al. (2009b), Horton et al. (2010), Mora et al. (2010), Ramírez-Arias et al. (2012), Saylor et al. (2012b), y Silva et al. (2013).

Los datos termocronológicos publicados fueron consolidados en una base de datos usando el Sistema de Información Geográfica ArcGIS versión 10.8, donde, adicionalmente, esta base de datos fue complementada con datos de flujo de calor (Pérez Gunsiyé et al., 2008), espesor elástico (modelo CRUST 1.0; Bassin et al., 2000; Laske et al., 2013), u otros datos geofísicos necesarios para realizar el modelado numérico.

La información se ordenó en formato (.shp) de ArcGIS, realizando mapas de distribuciones de edades y fallas sobre el mapa geológico-estructural (Figura 1), que permitieron observar densidad de datos y disposición de estructuras (fallas en superficie). Una vez seleccionadas las áreas de interés, se prepararon los archivos de entrada en formato de texto (.txt) en donde se establecen los parámetros de entrada para el código termocinemático, siendo estos parámetros: 1) edades de enfriamiento, 2) topografía, 3) parámetros de fallas, 4) parámetros topográficos, termales y flexurales.

Se compiló el código termocinemático 3D PECUBE usando GNU Fortran y lenguaje C. Para la visualización se utilizaron formatos VTK (Visualization Tool Kit) y los gráficos finales fueron generados con Paraview de Laboratorios SANDIA. Con el fin de conocer las configuraciones geométricas de fallas, el comportamiento de los datos, evaluar el número de fases de exhumación, cambios en la topografía y establecer estrategias para las inversiones, se realizaron los primeros modelos directos (forward modeling) utilizando los datos termocronológicos recopilados.

Para el modelado numérico termocinemático inverso PECUBE, se usó el cluster informático de alto rendimiento APOLO de la Universidad EAFIT (https://www.eafit.edu.co/apolo). El código PECUBE en su versión NA (Neighborhood Algorithm) se compiló usando las librerías de paralelización Intel® MPI (Multfabric Message-Passing library). Estando el código ya paralelizado, simplemente se compiló en el clúster con la finalidad de realizar las inversiones y variar el espacio de parámetros.

Para seleccionar la mejor familia de parámetros se usó el código NA-Bayes desarrollado por Sambridge (1999a, 1999b) y se consideró la familia de modelos con menor misfit y con significancia geológica.

3.2. TASA DE EROSIÓN A LARGO PLAZO

Las distribuciones de las edades termocronológicas correspondientes a AFT, ZHe, ZHe y AHe, pueden usarse para obtener predicciones de las posibles tasas de exhumación o de erosión a largo plazo, las cuales eventualmente se podrían comparar con el modelo de la intensidad de la erosión a corto plazo, así como con los posibles parámetros de control climático y tectónico. Se usó la rutina Age2Edot desarrollado por Brandon et al. (1998) y modificada esta última por Schildgen et al. (2018), que calcula tasa de erosión a largo plazo (km/Ma), basada en la edad del sistema (Ma), la profundidad de la temperatura de cierre (km), la temperatura de cierre (°C) y la tasa de enfriamiento (°C/Ma). Para llevar a cabo este procedimiento, se consideraron como parámetros para los cálculos cada uno de los cuatro sistemas termocronológicos, una difusividad térmica igual a 30 km2/Ma, el espesor cortical del modelo se asumió en 40 km, la temperatura en la base del modelo fue de 624.7 °C, siendo esta última obtenida de los modelos termocinemáticos inversos resultados de la presente investigación. Así, la figura 2 muestra, para el caso particular del método de trazas de fisión en apatito, la variación de las tasas de erosión con la edad. Una vez que se obtiene esta figura para cada uno de los métodos, el código arroja la tasa de erosión que le corresponde a cada edad.

Figura 2 Relación entre tasa de erosión a largo plazo versus edades por trazas de fisión según el modelo unidimensional Age2edot (Brandon in Ehlers et al., 2005). 

3.3. CÓDIGO TERMOCINEMÁTICO PECUBE

El código termocinemático 3D PECUBE, desarrollado por Braun (2003), constituye una parte fundamental de la termocronología cuantitativa (Braun y Robert, 2005; Braun et al., 2006; Braun et al., 2012).

Este código resuelve la ecuación del calor en tres dimensiones usando el método de elementos finitos el cual es una técnica numérica (Burden y Faires, 2002) que en el caso particular de PECUBE, permite resolver el siguiente problema de valor de frontera:

ρcTt+uTx+vTy+wTz=xκTx+yκTy+zκTz+ρHT0=T0x,y,x,t=0Tx,y,x=Sx,y,t,t=TMSL+βSTx,y,z=-L,t=T1Tn=0  en el borde 1)

En donde: T(x,y,z,t) es la temperatura; ρ es la densidad de la corteza; c es la capacidad calórica; es la difusividad termal definida como el cociente entre la conductividad termal k y el producto de la densidad del manto y la capacidad calórica c.

Un valor típico de la difusividad termal es 25 km2 Ma-1 asumiendo k ≈ 2Wm-1K-1, ρ ≈ 3000 kg m-3 y c ≈ 1000WK-1 kg-1; H es la tasa de producción de calor; u,v,w son las velocidades de migración vertical de las rocas; T0 es la temperatura inicial; S(x,y,t) es la altitud en superficie considerando como base el nivel del mar; T1 es la temperatura en la base del modelo, asumiendo que está localizada a z = -L; TMSL temperatura al nivel del mar; β es la tasa de variación atmosférica.

En este modelo, en lugar de definir el flujo de calor es posible usar la temperatura basal, la cual simplifica los cálculos termales.

La ecuación 1 predice la edad en la cual pasa el termocronómetro (mineral de interés) a través de la temperatura de cierre, usando diferentes sistemas termocronológicos. En este caso, la ecuación del calor detecta si un bloque de la corteza está siendo afectado por procesos termo-tectónicos (movimiento vertical u horizontal o erosión). En los modelos que empleamos inicialmente, suponemos que no hay influencia del flujo de fluidos, y que la transferencia de calor por advección y conducción de rocas son los mecanismos dominantes de transferencia de calor. Este supuesto es importante porque permite contrastar zonas con alto flujo de calor observado. Es importante mencionar que se realizó más de un modelo directo donde se variaron distintos parámetros. A continuación se proporcionan más detalles del código PECUBE.

PECUBE emplea una mezcla de los métodos Lagrangiano y Euleriano para el campo de fluidos; ésta es una forma de mirar el movimiento del fluido, que se enfoca sobre ubicaciones específicas en el espacio a través del cual éste se distribuye (Braun, 2003). Estas especificaciones pueden ser aplicadas a cualquier marco de referencia del observador y en cualquier sistema de coordenadas empleado o usado dentro del marco de referencia escogido. Esto permite a PECUBE producir frecuentes re-interpolaciones del campo de temperatura en la dirección vertical. Así se calculan los caminos tiempo-Temperatura (t-T) obteniendo las edades termocronológicas para los minerales empleados.

3.3.1. SELECCIÓN DE LOS MEJORES MODELOS DIRECTOS

La selección de un buen modelo directo es basada en el cálculo del "misfit" (norma L2 o error cuadrático medio; Braun, 2003), el cual se estima mediante la siguiente expresión:

Misfit=1ni=1ntobsi-tcali2errorobsi 2)

Donde n es el número de observaciones, tobs y tcal corresponde a las edades observadas y predichas por PECUBE para cada una de las muestras i.

3.3.2. ALGORITMO DE ENTORNO VECINO (NEIGHBORHOOD ALGORITHM; NA)

Una vez que se ejecuta el código termocinemático en su versión directa (forward), es necesario para entender cómo los diferentes mecanismos de exhumación y modelos termocinemáticos controlan la distribución de edades, realizar una exploración robusta del espacio de parámetros, lo cual sólo es posible a través de las inversiones en el cual PECUBE está acoplado con el algoritmo NA (Sambridge 1999a, 1999b; Herman et al., 2007; Campani et al., 2010; Robert et al., 2011; Braun et al., 2012).

El NA es un procedimiento numérico de dos etapas, el cual sirve para calcular los estimados Bayesianos de los parámetros de entradas para problemas inversos no lineales (Valla et al., 2010; Glotzbach et al., 2011). La primera etapa o fase de muestreo, es un método de búsqueda iterativa; el muestreo se concentra sobre regiones del espacio multidimensional de parámetros, en la cual la función misfit es optimizada numéricamente. El espacio de parámetros se divide en celdas de tipo Voronoi centradas sobre cada modelo muestreado, el cual representa el entorno cercano sobre cada punto. Una cierta cantidad de modelos directos con mejor ajuste (mayor al 50%) son usados para definir nuevas celdas Voronoi y así redefinir un nuevo espacio de parámetros. Este nuevo espacio de parámetros es muestreado durante la próxima iteración de forma aleatoria, eventualmente convergiendo hacia una de varias familias que minimiza la función misfit dada por la ecuación 2.

Posteriormente se usa el Criterio de Información Bayesiana (BIC por sus siglas en inglés; Schwarz, 1978) para la selección del modelo con diferente número de parámetros. Cuando se estiman parámetros de modelos usando estimación por máxima verosimilitud, es posible incrementar la verosimilitud añadiendo parámetros, lo cual puede resultar en un sobreajuste de los datos (Glotzbach et al., 2011). El BIC resuelve este problema introduciendo un término de corrección para el número de parámetros en el modelo. Así, el BIC vendría dado por la siguiente expresión:

BIC=1lnLmax2+klnn 3)

Donde Lmax es la máxima verosimilitud obtenida para el modelo (L = e -misfit), k es el número de parámetros libres y n es el número de observaciones, respectivamente.

La resolución de los parámetros es asegurada mediante la función de densidad de probabilidad marginal asociada (PDF por sus siglas en inglés) obtenida mediante el remuestreo del conjunto de modelos y es controlada por la función de densidad de probabilidad posterior (PPD por sus siglas en inglés). Finalmente, la función log (PPD) es simplemente la función logarítmica de la verosimilitud L.

3.3.3. FILOSOFÍA DEL MODELO

El área de modelo corresponde a una región rectangular de 29.5 km x 57.16 km para un total de 1686.22 km2, dentro de la cual se consideró como estructura principal la Falla de Soapaga, situada en el centro del área de estudio, mientras que la Falla Boyacá se sitúa en el borde noroccidental del bloque tridimensional considerado. Se asumió en el modelo un ángulo de 30° de ambas fallas y una profundidad de 15 km (Toro, 1990). A cada lado de la Falla de Soapaga se asume que los bloques son independientes, proporcionando a cada sector una tasa de exhumación distinta. La temperatura en la base del modelo se consideró variable entre 300 a 900°C, la temperatura superficial de 15°C, la tasa de producción de calor (HP) se asume variable entre 0 a 8 μWm-3, el espesor del modelo se consideró fijó en 40 km. El tiempo de inicio de cada fase de exhumación se asume variable entre 0 a 100 Ma, y las velocidades de exhumación para cada pulso se consideró variable entre 0 a 2 km Ma-1. Los rangos escogidos son relativamente amplios lo cual permite una mejor búsqueda de los parámetros óptimos por parte del algoritmo del Entorno Vecino (Braun et al., 2012). En la figura 3 se puede apreciar la configuración inicial del modelo. En las tablas 1 y 2 se presentan los parámetros fijos y variables considerados en el modelado numérico.

Figura 3 Configuración cinemática inicial del modelo PECUBE, las flechas azules indican los campos de velocidad de exhumación en cada uno de los bloques situados a ambos lados de la Falla de Soapaga. 

Tabla 2 Parámetros considerados variables en el modelado inverso termocinemático. 

Parámetro Símbolo Rango de variación Unidades
Producción de calor A 0-8 μWm-3
Temperatura en la base del modelo Tz 300-900 ºC
Tiempo de inicio de la exhumación tEi 0-100 Ma
Tasa de exhumación de cada fase i Ei 0-2 km Ma-1
Número de fases de exhumación i 1-3

Los tiempos de cada pulso de exhumación que el modelo termocinemático PECUBE predice pueden llegar en algunos casos hasta valores menores a 0.1 Ma. Sin embargo, esto último depende de la distribución de edades observadas en la zona de estudio. Así con la finalidad de comparar las tasas de exhumación (o levantamiento de la columna de rocas) a largo plazo con las que ocurren hoy en día (corto plazo), se estiman tasas de levantamiento a partir de la deformación sísmica. Al igual que Braun et al. (2009), si consideramos u el levantamiento sísmico, cómo el levantamiento vertical generado por la deformación sísmica, el cual corresponde a la cantidad de levantamiento de roca predicha a partir de la liberación de energía sísmica medida en los últimos 24 años (período de tiempo de la base de datos sísmica) y extrapolada en los últimos 5 Ma. Es posible comparar las tasas derivadas de la termocronología con las tasas de levantamiento derivado del patrón sísmico. Esta extrapolación puede realizarse sin problema alguno ya que el levantamiento u depende de los valores a y b de la relación de Gutenberg y Richter (1954), los cuales a su vez incluyen implícitamente los períodos de retornos de los sismos.

Sin embargo, es bien sabido que esta relación cambia a través de los años en una región, a lo largo del ciclo sísmico, y particularmente luego de la ocurrencia de un sismo mayor en el área. Por ende, esta comparación tiene que hacerse con cautela, y conociendo estas limitaciones. La relación antes mencionada es explicada a continuación en la siguiente sección.

3.4. DESCRIPCIÓN DE BASE DE DATOS SISMOLÓGICA

Se cuenta con 356 datos de sismicidad para 24 años, entre 1993 y 2017, donde no se tienen datos para el año 2000. Se registró el mayor número de eventos para los años: 2017 (30), 2016 (39), 2011 (36) y 2003 (27). Se identificaron dos zonas (Figura 4A) al este de la falla de Soapaga con 117 y 53 eventos, respectivamente. Un evento de magnitud 5,4 se registró en julio de 1999 (latitud 6.073° N, longitud -72.7270° W, profundidad de 2.9 km), seguido en orden de magnitud, se presentaron otros dos eventos: diciembre de 2001, magnitud de 4.4 (latitud 5.9430° N, longitud -72.5220° W, profundidad de 0.9 km) y en agosto de 2002, magnitud de 4.0 (latitud 5.9360° N, longitud -72.5580° W y a una profundidad superficial).

Figura 4 (A) Distribución de eventos sísmicos y localización de fallas activas (Ulloa et al., 1998). (B) Relación magnitud-frecuencia de la base de datos sismológica. c11, c12, c21, y c22 denotan los cuadrantes en los que fue dividida la zona para la comparación de los parámetros a y b de la relación Gutenberg y Richter (1954). N representa el número de sismos observados entre 1993 a 2017. 

La figura 4A muestra la distribución de los eventos sísmicos, donde los símbolos varían de acuerdo con la magnitud de los eventos sobre un fondo de los principales sistemas de fallas activas. En la figura 4B, se muestra un histograma de los eventos analizados en este trabajo. La zona se caracteriza por presentar una mayor cantidad de eventos entre 1.0 a 2.8 de magnitud, y apenas un evento de magnitud 4 y otro de magnitud 5, respectivamente.

3.4.1. ENERGÍA SÍSMICA

Con la base de datos de sismicidad, calculamos la liberación de energía sísmica (Se), utilizando las magnitudes locales según la expresión de Gutenberg y Richter (1954):

log10Se=bMi+a 4)

Los valores de los parámetros a y b se estimaron mediante un ajuste al cuadrado mínimo de las relaciones magnitud-frecuencia acumuladas construidas a partir de todos los terremotos registrados en la región. Generalmente, el valor a está relacionado con la actividad sísmica y por lo tanto con el tiempo y el volumen de la ventana considerada. El valor b es uno de los parámetros estadísticos más importantes para describir las propiedades de escala de tamaño de la sismicidad; los valores b cambian aproximadamente en el rango de 0.3 a 2.0, dependiendo de las diferentes regiones. Sin embargo, las estimaciones medias a escala regional del valor b suelen ser iguales a 1 (Frohlich y Davis, 1993).

Muchos factores pueden causar una perturbación del valor promedio de b (b~1.0); las regiones que tienen valores b más bajos son probablemente regiones sometidas a un mayor esfuerzo de cizallamiento aplicado después de la perturbación principal, mientras que las regiones que tienen valores b más altos son zonas que han experimentado un deslizamiento. Regiones con valores b altos provienen de zonas que tienen una mayor complejidad geológica, lo que indica la importancia de las zonas de fracturas múltiples; un valor bajo de b puede ser relacionado con un bajo grado de heterogeneidad de las tensiones y deformaciones medias y grandes de las fracturas, la alta velocidad de deformación y la actividad de grandes fallas. Las anomalías de los valores b pueden deberse a anomalías en el gradiente térmico o la heterogeneidad de la corteza (Bayrak y Öztürk, 2004).

3.4.2. DEFORMACIÓN SÍSMICA

Los valores de liberación de energía sísmica se acumularon dentro de círculos con un radio de 1 km alrededor del epicentro de cada terremoto. Adicionalmente, utilizamos la base de datos sismológicos compilada para estimar la distribución actual de la tasa de deformación frágil, que puede extrapolarse a través del tiempo geológico utilizando la relación magnitud-frecuencia observada del terremoto (Gutenberg y Richter, 1954). Para calcular la tasa de deformación frágil, utilizamos la siguiente expresión (Braun et al., 2009):

εH=12μΔVΔtb10a+9.11.5-b101.5-bMmax 5)

En esta última expresión, a y b fueron definidas anteriormente; Mmax, es la magnitud máxima observada, aunque en este caso fue sustituida por la magnitud puntual porque no hay un cúmulo significativo de eventos sísmicos en las superficies de erosión; μ es el módulo de Young o el módulo de elasticidad longitudinal. En este trabajo, se utilizó un valor estándar de 1x1010 Pa para los primeros 15 km de la corteza (Turcotte y Schubert, 2002). ΔV representa el volumen de la corteza el cual es calculado para el área de estudio. Se calcula el área de la zona y se multiplica por 15 km que representa la profundidad de la zona de transición entre comportamiento frágil-dúctil. Finalmente, como se mencionó anteriormente los terremotos fueron observados en un período de tiempo Δt = 24 años.

3.4.3. DEFORMACIÓN VERTICAL O LEVANTAMIENTO SÍSMICO

Es posible describir la deformación actual de la zona de estudio por un acortamiento horizontal geográficamente variable pero verticalmente uniforme a un ritmo igual a la tasa de deformación sísmica frágil εH De acuerdo con el principio de conservación de masa a escala de la litósfera, esto implica que el acortamiento horizontal debe ser acompañado de un engrosamiento vertical a una tasa V = -εH, suponiendo que la deformación horizontal en una dirección perpendicular a la dirección de máximo acortamiento es insignificante, y asumiendo además que el estado actual de compresión a lo largo de la Cordillera Oriental se ha incrementado desde los últimos 5 Ma al presente (Siravo et al., 2018, 2020), es posible estimar la cantidad total del engrosamiento experimentado en la zona integrando la tasa de deformación vertical calculada sobre los últimos 5 Ma como:

εv=ε˙v×5Ma=-εH×5Ma 6)

La deformación vertical calculada puede usarse para calcular el engrosamiento litosférico local y, asumiendo una condición de equilibrio isostático local, la cantidad de levantamiento u sobre los últimos 5 Ma está dada por:

u=-5hcεH1-ρcρm 7)

Donde hc es el espesor cortical en cada píxel de la zona de estudio obtenido del modelo CRUST 1.0 (Bassin et al., 2000; Laske et al., 2013), ρc y ρm son las densidades estándares (promedio) de la corteza y el manto, respectivamente.

3.5. ESTIMACIÓN DE PARÁMETROS GEOMORFOLÓGICOS

Las variables geomorfológicas, tanto topográficas como de la red de drenaje, son fundamentales para entender la evolución del paisaje y entender cuáles mecanismos, ya sea tectónicos y/o climáticos, han influenciado en su formación. En este trabajo, se evaluaron dos índices a nivel topográfico (relieve local e integral hipsométrica) y uno al nivel de la red de drenaje (índice de empinamiento normalizado). Para el cálculo de estos parámetros se emplearon los modelos de elevación digital a 30 metros del sensor ALOS previamente mencionado.

3.5.1. RELIEVE LOCAL E INTEGRAL HIPSOMÉTRICA

Los índices del relieve local y de la integral hipsométrica (HI) tienen como finalidad revelar información sobre el estado evolutivo del paisaje en una escala de tiempo que puede ir hasta 106 años (Pike y Wilson, 1971). Estos índices fueron calculados y ploteados a través de la herramienta estadísticas focales del software ArcMap® versión 10.8 para cada píxel del modelo de elevación digital anteriormente mencionado. En este caso se consideró el área total y no las cuencas dentro de la zona de estudio. El relieve local se obtiene al sustraer la elevación mínima de la elevación máxima para una ventana de análisis circular, la cual se definió de cinco kilómetros de radio. Se usa este valor para extraer información del paisaje a nivel regional incluyendo los bloques de las fallas de estudio. La HI se puede calcular usando la siguiente ecuación:

HI=me-mnemxe-mne 8)

Donde me es la elevación promedio, mne en la elevación mínima y mxe es la elevación máxima en una ventana de análisis, que, para este caso, se usa la misma del relieve local (5 km). Valores de HI mayores a 0.5 indican un paisaje juvenil que puede estar respondiendo a un rejuvenecimiento topográfico producto de un levantamiento de la superficie o cambios litológicos. Valores entre 0.3 y 0.5 hacen relación a paisajes en equilibrio, mientras que valores de HI<0.3 se asocian a paisajes seniles donde los procesos erosivos predominan (Bustos et al., 2013).

3.5.2. ÍNDICE DE EMPINAMIENTO (KSN)

Para el análisis de la red de drenaje, se evaluó el índice de empinamiento del canal normalizado (ksn por sus siglas en inglés). Este índice expresa la pendiente normalizada de una red fluvial en un espacio de coordenadas logarítmicas área-pendiente. Este índice es importante para la identificación de procesos tectónicos activos y se relaciona a la concavidad (θ) según la siguiente ecuación (Hack 1973; Flint 1974):

S=ksnA-θ 9)

Donde S corresponde a la pendiente del canal, ksn es el índice de empinamiento normalizado del canal, A es el área de la cuenca de drenaje y θ es el índice de concavidad.

Kirby y Whipple (2001) proponen trabajar esta ecuación con un índice de concavidad de referencia (θref) a partir de la media regional de los valores de θ, en segmentos del canal sin anomalías topográficas, y sugieren que el θref calculado se debería situar en un intervalo de 0.4 ≤ θ ref ≤ 0.6. Para una red fluvial en condiciones topográficas normales, la curva log área vs log pendiente no presentará datos anómalos y se representará por una línea recta con pendiente negativa. Cuando se presentan knickpoints (de tipo: tectónicos, litológicos, climáticos o erosivos) a lo largo del drenaje, existirán variaciones significativas. Anomalías con quiebres verticales pequeños (vertical-step knickpoint) y discretos no tienen un significado tectónico directo (Kirby y Whipple, 2012), en contraste cuando se observan puntos de quiebre de pendiente significativos (slope-break knickpoint), éstos se generan como respuesta a cambios persistentes espaciales o temporales. Para evaluar actividad neotectónica, este índice se utiliza principalmente representado en una vista en planta sobre un mapa, facilitando la delimitación de zonas activas (e.g., Wobus et al., 2006; Dalman, 2015; Rizwan et al., 2016; Dey et al., 2019). En este trabajo, usamos un θref = 0,45 para el cálculo del índice ksn. Este último se determinó utilizando el código Topo-toolbox, herramienta ejecutable en Matlab® 2018 y desarrollada por Schwanghart y Kuhn (2010). Una vez determinados los valores del índice de empinamiento para cada una de las subcuencas, se realiza una interpolación geoestadística, para obtener en planta zonas de densidades, que representan áreas con los mayores valores de ksn.

4. Resultados

4.1. MODELAMIENTO INVERSO TERMOCINEMÁTICO

La mejor familia de modelos inversos es aquella en la cual se emplean dos fases de exhumación para la Falla de Boyacá y una sola fase para la Falla de Soapaga. Esta familia presentó el menor BIC (687) y está conformado por 10100 modelos directos. La figura 5 representa los resultados de nuestra familia preferida de modelos, donde cada punto de colores representa un modelo directo. El asterisco en color negro representa el modelo directo de menor misfit (0.77). Las curvas grises y negras representan las marginales 2D Bayesianas; la zona en gris delimita los modelos que poseen una confiabilidad de 95%, mientras la zona en negro representa los modelos con 99% de confiabilidad, respectivamente. Las curvas de densidades colocadas en la parte superior y a la derecha de cada figura representan las marginales en 1D y la mejor familia de modelos es aquella que presentó un menor valor de misfit. En este caso, la inversión de parámetros sugiere dos pulsos de exhumación para el sector entre la fallas de Boyacá y Soapaga, un primer pulso t1FB desde 69.09 hasta 15.73 Ma con un tasa de exhumación cercana a 0.9062 km/Ma y un segundo pulso de exhumación t2FB desde 15.73 al presente, con una tasa de exhumación de 0.1613 km/Ma. Esta tasa se obtiene sumando las dos tasas de exhumación obtenidas de la primera y segunda fase. Esta diferencia en tasas de exhumación se debe a que generalmente una vez que se produce un primer pulso de exhumación muy rápido es necesario que exista posterior a este evento un reajuste isostático lo cual ocasiona que disminuya la tasa de exhumación (Spotila, 2005). Así, se observa que ocurre un cambio de la geometría de la falla a 15.73 Ma. En contraste, la zona situada en el bloque yacente de la Falla de Soapaga, exhibe un pulso de exhumación continuo desde 22.65 Ma al presente con una tasa de exhumación de 0.4867 km/Ma.

Figura 5 Resultados del modelado termocinemático inverso. Cada punto de color corresponde a un modelo forward, esta figura está constituida por 10100 modelos forwards. Se muestran las marginales Bayesianas en 1D y 2D. Las curvas gris y negra en las marginales 2D corresponden a los modelos con una confiabilidad de 95 y 99% respectivamente. 

Los parámetros obtenidos para el modelo directo de menor misfit (0.77), el cual es denotado con asterisco en la figura 5, es utilizado para predecir edades en cada píxel del modelo de elevación digital, donde edades predichas son comparadas con las edades observadas, con la finalidad de que pueda analizarse la reproducibilidad del modelo. En la figura 6, se realiza una comparación entre edades observadas y predichas por el modelo de menor misfit. Considerando los errores sobre las edades, el modelo de menor misfit puede predecir con eficiencia las edades observadas para los sistemas AFT (Figura 6B) y ZHe (Figura 6C) que son las más abundantes. Sin embargo, para los sistemas AHe y ZFT (Figuras 6A y 6D, respectivamente) donde se disponen de pocas edades observadas para cada sistema, no se observa un buen ajuste. La razón de esto puede deberse a dos factores: i) generalmente las edades AHe y ZHe son obtenidas promediando edades individuales por cristales, pero los mismos pueden tener una alta dispersión producto de distintas fuentes de error entre las cuales se destacan: el tamaño del grano, el daño por radiación, la fragmentación del grano, la zonificación U y/o Th, las complejas relaciones intragranulares eU, la implantación del He, las incertidumbres en el cálculo del factor de eyección alfa, las inclusiones minerales, las inclusiones de fluidos ricos en He y la prolongada residencia en la zona de retención parcial del He (Wildman et al., 2016; Danisík et al., 2017; Hueck et al., 2018). Además, las imperfecciones en los cristales, como los daños en las vacantes y los microeventos cristalográficos también pueden afectar a la difusión de He (Gerin et al., 2017; Zeitler et al., 2017). A partir de todos estos factores, una variación significativa de las características composicionales y cristalográficas podría producir una dispersión intramuestra a edades de He superiores al 50% (por ejemplo, Wolfe y Stockli, 2010; Wildman et al., 2016).

Figura 6 Comparación entre edades observadas y predichas(p) por el modelado termocinemático PECUBE para distintos sistemas termocronométricos: (A) AHe, (B) AFT, (C)ZHe, y (D) ZFT. 

Mientras que las edades ZFT dependen del tiempo de ataque químico que se realice en el laboratorio para revelar las trazas de fisión confinadas. Adicionalmente, en esta investigación sólo se incluyeron las fallas de Boyacá y Soapaga, pero no se descarta la reactivación de otras fallas menores presentes en la zona de estudio.

Adicionalmente es importante considerar la acción de los fluidos hidrotermales los cuales pudieran afectar las edades obtenidas (Ehlers, 2005; Sueoka et al., 2019; Sánchez et al., 2020). Finalmente, en todos los modelados termocinemáticos inversos y directos realizados en esta investigación se asumió que la topografía estaba en equilibrio, es decir, que la topografía considerada al inicio y al final de los modelos siempre fue la misma. Esto último se hizo con la finalidad de analizar los tiempos y tasas de exhumación. Para los estudios de topografía se necesita una mayor densidad de edades observadas recolectadas a lo largo de la ondícula topografía (Bermúdez et al., 2011; Braun et al., 2012).

Las edades predichas por el modelo de menor misfit (denotado por asterisco en la figura 5) sobre cada píxel del MDE y el gradiente de temperaturas en profundidad pueden observarse en forma de diagrama tridimensional en la figura 7. En esta figura se observa que en el bloque yacente de la Falla de Soapaga el modelo predice las menores edades de ZFT y ZHe, lo cual se debe a que en este bloque la tasa de exhumación es mayor y mucho más reciente que para el bloque colgante. En contraste, las edades proporcionadas por los termocronómetros de más baja temperatura AHe y AFT tienden a ser más antiguos en el bloque yacente de la Falla de Soapaga (Figura 7), lo cual es concordante con los resultados mostrados en la figura 6.

Figura 7 Predicciones del modelo termocinemático de menor misfit: (A) AHe, (B) AFT, (C) ZHe, y (D) ZFT. 

4.2. VARIABLES SISMOLÓGICAS

Los valores a y b de la zona de estudio fueron derivados de la ecuación (4). Con el propósito de analizar anomalías en los valores de b, el área de estudio se dividió en cuatro cuadrantes y se calcularon para cada zona los valores de b. En la figura 8, se presentan las relaciones entre magnitud y frecuencia de la sismicidad reportada para el área de estudio (Figura 4) y el valor de b obtenido de la relación Gutenberg-Richter (Ecuación 4) para cada uno de los cuadrantes. En la figura 8, b11, b12, b21, y b22 son los valores de b obtenidos para cada uno de los cuadrantes c11, c12, c21, y c22, respectivamente, mostrados en la figura 4. El valor b observado está relacionado con la descripción de la cinemática de la falla en términos de deslizamientos, y su interpretación en términos de características intrínsecas de los mecanismos de fallamiento (Senatorski, 2020). Cómo se mencionó en la sección anterior, valores bajos de b corresponden a regiones de mayor tensión (Scholz, 1968; Nuannin et al. 2005; Wiemer y Schorlemmer, 2007). Sin embargo, considerando el error, los valores b para los primeros tres cuadrantes son muy homogéneos.

Figura 8 Relación magnitud-frecuencia de sismos reportados en el área y regresión por mínimos cuadrados para la obtención de los parámetros a y b necesarios para la derivación de la relación Gutenberg-Richter (Ecuación 4). Las líneas verde y azul representan las bandas de confiabilidad a 95 y 99%, respectivamente. (A) cuadrante inferior derecho (c11), N=113, (B) cuadrante superior derecho (c12), N=167, (C) cuadrante inferior izquierdo (c21), N =46 y (D), cuadrante superior izquierdo (c22), N=32. N representa el número de sismos de cada subzona. 

Con el propósito de mostrar el comportamiento sísmico del área de estudio y la presencia de anomalías que puedan deberse a la complejidad geológica, se presenta en la figura 9 las distintas variables sísmicas calculadas a lo largo de la zona de estudio. Se observa en la figura 9A, la variación de los valores de b entre 0.3 a 0.6. Aquellas zonas donde se obtienen valores de b menores a 0.4 posiblemente se deba a que la cantidad de sismos reportados en el área es menor a 20 sismos. En esta figura se resaltan dos zonas, ambas situadas al este de la Falla de Soapaga, donde existe una importante convergencia de fallas menores (Mesalta, Cordizal, La Puerta, Tasco, Monchadita, Los Volcanes) que forman un sistema transpresivo local. Estas zonas coinciden con las áreas de mayor exhumación discriminadas en el modelado numérico termocinemático. En la figura 9B se presenta el mapa de energía sísmica acumulada en un radio de 2.5 kilómetros obtenido para el área de estudio, donde los valores oscilan de 237.8 a 116757.8 Joules. La deformación sísmica (Figura 9C) acumulada usando este mismo radio varía de 3.42E-19 a 2.84 E-15 s-1. El mayor valor de deformación sísmica se registra hacia el noreste de la Falla de Soapaga, en un área delimitada por las fallas de Soapaga, Paz de Río y Cordizal. La figura 9D representa el levantamiento sísmico acumulado en el área, el cual varía de unos pocos metros (5.8 m) a 107.4 metros, en una zona que experimenta un comportamiento de rumbo-dextral.

Figura 9 Comparación de diferentes parámetros sísmicos: (A) valor-b, (B) Energía sísmica acumulada desde 1993 al presente, (C) Deformación sísmica acumulada desde 1993 al presente, y (D) Levantamiento sísmico desde hace 5 Ma al presente. La cinemática de las fallas fue extraída de Ulloa et al. (1998)

4.3. VARIABLES GEOMORFOLÓGICAS

Las variables geomorfológicas como relieve (R), la integral hipsométrica (HI) y el índice de empinamiento (ksn), se calcularon para cada píxel del modelo de elevación digital, siendo posible elaborar mapas para cada una de estas variables, tal como se muestra en la figura 10. En el bloque colgante de la Falla de Boyacá, valores moderados de relieve y altos de HI sugieren un estado evolutivo del paisaje juvenil, donde la falla claramente ejerce un control topográfico fuerte.

Figura 10 Métricas geomorfológicas: (A) Relieve local R, (B) índice hipsométrico HI y (C) índice de empinamiento ksn. 

Esto se corroboró con los análisis del índice de empinamiento (ksn) ya que se observan valores altos de ksn relacionados a la Falla de Boyacá. En contraste, la Falla de Soapaga se caracteriza por valores moderados a bajos de relieve local, HI y ksn. Una posible explicación para este comportamiento puede ser la acumulación de grandes volúmenes de sedimentos cuaternarios que suavizan el paisaje. Para el caso del ksn, estos sedimentos modificarían la dinámica fluvial, inhibiendo la incisión de los drenajes. Otras dos explicaciones serían: i) la escala de tiempo estudiada con los índices (103 a 106 años), en la cual posiblemente esta estructura no ha tenido una actividad vertical importante, lo cual es compatible con los análisis de deformación sísmica (Figura 9) por lo que el paisaje no ha sufrido rejuvenecimientos recientes, y ii) existe una diferencia litológica importante entre los bloques yacentes y colgantes de la Falla de Soapaga (Figura 1). Explicar la contrastante dinámica erosional en ambas zonas es bastante compleja, por un lado se tiene las diferencias litológicas entre ambas zonas. Por otro lado, procesos exógenos diferentes podrían afectar de forma asimétrica los dos bloques, mientras en el bloque colgante el drenaje está limitado por las dos fallas principales, el drenaje del bloque yacente es mucho más amplio, y la distribución de la deformación sísmica por la presencia de fallas menores es mucho más compleja, donde estas estructuras (fallas Cordizal, La Puerta, etc; Figura 10), todas activas, pueden modificar el relieve y eso explicaría la diferencia en las medidas morfométricas.

5. Discusión

El modelo termocinemático de menor misfit sugiere un comportamiento diferencial en los patrones de exhumación a cada lado de la Falla de Soapaga, lo cual es observado en otros lugares de los Andes del Norte, específicamente, en los Andes de Mérida, donde el modelado termocinemático sugiere velocidades y tiempos de inicio de la exhumación diferentes (Bermúdez et al., 2011; Bermúdez et al., 2019). Mientras en el sector delimitado entre las fallas de Boyacá y Soapaga, la exhumación comienza más temprano, aproximadamente a 69.09 Ma con una tasa de 0.9 km/Ma, posteriormente a 15.73 Ma, esta tasa desciende a 0.2 km/Ma. En contraste, en el bloque colgante de la falla de Soapaga, la exhumación se detecta a partir de 22.65 Ma hasta el presente con una tasa de 0.5 km/Ma. Particularmente, en ese sector se identifican los mayores valores de levantamiento sísmico acumulado, el cual varía entre 71 a 107 metros (Figura 9D). Las edades AHe y AFT en el bloque yacente de la Falla Soapaga son relativamente más antiguas (17 a 20 Ma) que la zona situada al oeste con edades entre 6 a 9 Ma. Las edades y tasas de exhumación predichas para esta parte del bloque modelado son consistentes con las reportadas por varios autores a lo largo del Macizo de Santander y específicamente en localidades cercanas a la Falla de Bucaramanga (van der Lelij et al., 2016; Amaya et al., 2017, 2020). Esto indicaría que el sector más antiguo sufrió un importante rejuvenecimiento topográfico durante el Mioceno tardío. La pregunta que se deriva de esta observación sería: ¿a qué se debe tal rejuvenecimiento en el sitio de menor actividad tectónica de acuerdo con la sismicidad?. Diferentes autores (e.g., Mora et al., 2008; Ramírez-Arias et al., 2012), han favorecido la importancia del clima como agente controlador del relieve y las tasas de exhumación a lo largo de la Cordillera Oriental. Adicionalmente, investigaciones realizadas por Parra et al. (2009), Mora et al. (2010); Ramírez-Arias et al. (2012) y Silva et al. (2013), resaltan la importancia que ha tenido la inversión de la Falla de Boyacá para explicar los eventos de exhumación preandinos, al menos desde el Oligoceno hasta el Mioceno temprano. Los modelos termocinemáticos presentados acá confirman que esta falla es significativa desde el Cretácico superior (Maastrichtiense) hasta el Mioceno medio, a partir de cuando existe una fase importante de desaceleración en las tasas de exhumación que pudiera coincidir con eventos de enfriamientos lentos reportados por Mora et al. (2010) y Sánchez et al. (2012). Sin embargo, esto no es lo que se espera en zonas en donde los patrones de exhumación son controlados por el clima (Whipple et al., 2009; Hergarten y Kenkmann, 2019; Mishra et al., 2019).

Con el propósito de discriminar efectos tectónicos versus climáticos como agentes controladores del relieve o de la tasa de exhumación, se realizó la compilación de las distintas medidas calculadas en esta investigación, las cuales son resumidas en la tabla 3. Así, para facilitar la discusión de los resultados obtenidos y la integración con la pregunta antes mencionada, se hizo un análisis de correlación de Pearson para los valores reportados en la tabla 3.

Tabla 3 Diferentes variables obtenidas para aquellas locaciones donde existen datos de edades de trazas de fisión en apatito (AFT). En esta tabla: t es la edad AFT, 1s es el error sobre la edad, erAFT es la tasa de erosión calculada con Age2Edot (Brandon et al., 1998; Ehlers et al., 2005), HI es el valor de la integral hipsométrica, P es la precipitación, R es el relieve local, ES es la energía, DS es la deformación y LS es el levantamiento sísmico, respectivamente. 

Muestra t 1s erAFT HI ksn P R ES DS LS Referencia
AM-09 25.7 2.1 0.3 0.4 69.9 815 597.0 1217.3 3.8E-18 1.2E-07 Mora et al., 2010
AM-10 19.0 2.1 0.4 0.4 55.9 815 718.0 1180.8 4.4E-18 1.4E-07 Mora et al., 2010
AM-12 16.0 3.0 0.4 0.3 20.2 907 749.0 1138.9 4.5E-18 1.4E-07 Parra et al., 2009b
FT-583 23.2 3.2 0.3 0.4 377.4 349 1916.0 909.1 3.1E-16 9.4E-06 Mora et al., 2010
FT-571 23.4 10.8 0.3 0.4 371.8 745 1912.0 899.3 2.8E-16 8.5E-06 Mora et al., 2010
FT-627 20.2 2.0 0.3 0.6 260.9 335 1664.0 2915.5 6.7E-18 2.1E-07 Mora et al., 2010
A48 16.0 3.0 0.4 0.3 20.2 907 749.0 1138.9 4.5E-18 1.4E-07 Silva et al., (2013)
A49 19.8 2.0 0.3 0.4 55.9 815 718.0 1180.8 4.4E-18 1.4E-07 Silva et al., (2013)
A50 25.9 2.2 0.3 0.4 69.9 815 597.0 1217.3 3.8E-18 1.2E-07 Silva et al., (2013)
FT2-04 16.4 3.5 0.4 0.6 157.2 624 1123.0 2393.7 3.1E-18 9.6E-08 Ramírez-Arias et al., 2012
AM-10 19.8 2.0 0.3 0.4 55.9 815 718.0 1180.8 4.4E-18 1.4E-07 Ramírez-Arias et al., 2012
COR1001 44.6 3.8 0.1 0.4 125.4 871 846.0 1168.6 1.9E-18 6.0E-08 Silva et al., (2013)
COR1002 55.1 10.9 0.1 0.4 125.4 871 846.0 1132.7 1.9E-18 6.0E-08 Silva et al., (2013)
COR1003 20.3 20.3 0.3 0.4 117.9 871 846.0 1142.4 2.0E-18 6.4E-08 Silva et al., (2013)
COR1005 41.7 2.2 0.2 0.3 154.1 950 1031.0 1058.4 9.5E-19 3.0E-08 Silva et al., (2013)
COR1006 12.2 4.3 0.6 0.3 154.1 971 1031.0 1306.1 9.4E-19 3.0E-08 Silva et al., (2013)
AFT-270710-16 11.2 1.7 0.6 0.6 229.1 335 1616.0 2174.4 1.5E-17 4.6E-07 Silva et al., (2013)

La tabla 4, muestra los valores de los coeficientes de regresión de Pearson. La figura 11 representa la matriz de dispersión de las distintas variables mostrando gráficamente la relación entre ellas.

Tabla 4 Coeficientes de correlación de Pearson mostrando las relaciones entre las variables. Estas se consideran significativas a partir de un valor r ≥ 0.6. Las relaciones esperadas o "triviales" son resaltadas en letras itálicas. 

erAFT HI ksn P R ES DS LS
erAFT 1
HI 0.34 1
Ksn -0.04 0.43 1
P -0.23 -0.82 -0.68 1
R 0.17 0.52 0.95 -0.75 1
ES 0.36 0.88 0.22 -0.64 0.33 1
DS -0.10 0.04 0.79 -0.41 0.74 -0.28 1
LS -0.10 0.04 0.79 -0.41 0.74 -0.28 1.00 1

Figura 11 Matriz de dispersión mostrando las correlaciones entre las distintas variables: erAFT tasa de erosión a largo plazo derivada de los datos AFT, ES energía sísmica, HI integral hipsométrica, P precipitación, R es el relieve local, ksn índice de empinamiento, DS deformación sísmica y LS levantamiento sísmico. Las relaciones con mayor correlación están más cerca de la diagonal principal. Los colores debajo de esta última indican la fuerza de las correlaciones. 

Considerando el índice HI, estos valores están relacionados con el grado de desequilibrio o equilibrio de las fuerzas erosivas y tectónicas sobre el relieve (Bustos et al., 2013). Aunque ésta no puede ser extrapolada a lo largo del tiempo geológico, ésta variable es muy útil en los estudios de tectónica activa, pudiendo así interpretarse como la relación que existe a corto plazo entre las fuerzas climáticas y/o tectónicas. Analizando la tabla 4 y la figura 10, se observa una correlación negativa (r=-0.82) entre HI y la precipitación promedio de la zona. En contraste, la relación entre HI y la energía sísmica es significativa (r=0.88). Sin embargo, un valor débil de correlación entre el relieve local (R) y HI (r=0.52), hace necesario que tales relaciones se estudien más detalladamente.

La correlación negativa entre P y R (r=-0.75) reafirma el hecho de que el clima no pareciera tener un factor preponderante en el área de estudio. Por el contrario, las fuerzas de las correlaciones (r=0.74) entre deformación sísmica (DS) y levantamiento sísmico (LS) desde hace 5 Ma, sugieren que la tectónica es el factor más importante como agente controlador del relieve. Estos resultados son consistentes con otros estudios realizados a lo largo de los Andes del Norte, y específicamente en los Andes de Mérida (Bermúdez et al., 2013), donde se encuentra un importante control tectónico sobre el relieve y sobre las tasas de exhumación a largo plazo. A diferencia del estudio antes mencionado, no se obtienen relaciones significativas entre las tasas de erosión calculadas asumiendo topografía en equilibrio con los parámetros sísmicos o climáticos, donde posiblemente la falta de correlación en este caso se deba a la posibilidad de que sea necesario incluir otros termocronómetros de baja temperatura como AHe. Sin embargo, esto no pudo realizarse ya que no existían datos suficientes en el área.

En regiones tectónicamente activas, como por ejemplo Taiwán, la actividad tectónica del cinturón se ha estudiado por diferentes métodos en varias escalas de tiempo (Chen et al., 2015). Sin embargo, las limitaciones de las características tectónicas en escalas de tiempo de 103 a 105 años son bastante limitadas. Así, para entender mejor el control tectónico sobre el relieve en esta escala de tiempo, los valores del índice ksn resultan muy útiles, por tal razón fueron incluidos en el análisis de correlación, obteniéndose relaciones significativas (r=0.95) entre este índice y el relieve (R), y entre deformación (DS) y levantamiento sísmico (LS) (r=0.79), los cuales son parámetros significativos a larga escala temporal.

Basados en la distribución espacial de los índices de relieve (R) y ksn (Figura 10), sumado a las fuertes correlaciones descritas (Figura 11; tabla 4), es importante resaltar que los predictores tectónicos (DS y LS) controlan el desarrollo del relieve y los procesos erosivos a corto plazo en la zona de estudio. Estos procesos erosivos pueden estar respondiendo al levantamiento de la superficie en escalas de tiempo relativamente recientes (103 a 106 años) y al parecer tienen un fuerte control estructural por las fallas con mejor expresión topográfica como la Falla de Boyacá. En contraste, la fuerte relación negativa (r=-0.68) refleja que el clima no pareciera ejercer un factor preponderante sobre el desarrollo del relieve (Figura 11).

6. Conclusiones

La modelización inversa termocinemática de datos termocronológicos tiene una serie de ventajas, ya que permitió discriminar el comportamiento asincrónico de la exhumación en un sector de la Cordillera Oriental hasta ahora poco estudiado. En el área de estudio, la Falla de Boyacá tiene una actividad tectónica significativa desde el Cretácico superior hasta el Mioceno medio, posiblemente durante el Mioceno medio cambia la cinemática de la falla, donde ese cambio trae como consecuencia el borrado parcial de los termocronómetros de baja temperatura.

En contraste, las edades y tasas de exhumación encontradas en el bloque yacente de la Falla de Soapaga son consistentes con las reportadas en la Falla de Bucaramanga. Además de esto, el análisis de los parámetros sísmicos como valores-b, energía, deformación y levantamiento sísmico, permitieron discriminar zonas con diferente comportamiento sísmico, bloque yacente de la Falla de Soapaga donde existe una importante coincidencia espacial entre las tasas de exhumación alta y levantamiento sísmico.

Adicionalmente, el estudio realizado permitió comprobar la importancia de la tectónica como un agente modelador del relieve observado en el área de estudio, la tectónica compresiva del área y la reactivación de fallas posiblemente se haya acelerado por la acreción de bloques a gran escala producto de la interacción de las Placas Nazca, Caribe y Suramérica.

Agradecimientos

A la Universidad Pedagógica y Tecnológica de Colombia (UPTC), Sogamoso Colombia, por el apoyo brindado durante el desarrollo de la presente investigación. Adicionalmente, agradecemos el financiamiento proporcionado a través del proyecto DIN-SGI-3104 de la Universidad Pedagógica y Tecnológica de Colombia (UPTC). Finalmente, al personal del Clúster de Alto Rendimiento Apolo de la Universidad EAFIT por proporcionar el tiempo de cómputo necesario para el desarrollo de la presente investigación. Agradecemos a Francisco Hilario Rego Bezerra de la Universidad Federal de Río Grande del Norte, Brasil, a los editores Laura Perucca, Franck Audemard y a los revisores anónimos por sus comentarios y sugerencias que ayudaron a mejorar la calidad de esta investigación.

Referencias

Acosta, J., Lonergan, L., and Coward, M.P., 2004, Oblique transpression in the western thrust front of the Colombian Eastern Cordillera: Journal of South American Earth Sciences, 17(3), 181-194. https://doi.org/10.1016/j.jsames.2004.06.002. [ Links ]

Amaya-Ferreira, S., Zuluaga, C.A., Bernet, M., 2017, New fission-track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the Northern Andes, Colombia: Lithos, 282-283, 388-402. https://doi.org/10.1016/j.lithos.2017.03.019. [ Links ]

Amaya-Ferreira, S., Zuluaga, C.A., Bernet, M., 2020, Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America, in Gómez, J. and Mateus-Zabala, D. eds., The Geology of Colombia: Bogotá, Colombia: Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 3(17), 1-17. https://doi.org/10.32685/pub.esp.37.2019.17. [ Links ]

ANH, 2008, Inventario, interpretación y evaluación integral de la información geológica, geofísica y geoquímica del Bloque Soapaga. Agencia Nacional de Hidrocarburos (http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones%20y%20Poster%20Tcnicos/Cordillera_Oriental.pdf), 111 p. [ Links ]

Bassin, C., Laske, G., Masters, G., 2000, The Current Limits of resolution for surface wave tomography in North America: Eos, Transactions American Geophysical Union, 81(48), F897. [ Links ]

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V, Mahecha, H., Lamus, F., Montenegro, O., Jimenez, G., Mesa, A., and Valencia, V., 2013, Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean-South American convergence in early Palaeogene time: Geological Society, London, Special Publications, 377(1), 285-314. http://dx.doi.org/10.1144/SP377.5. [ Links ]

Bayrak, Y, Öztürk, S., 2004, Spatial and temporal variations of the aftershock sequences of the 1999 Izmit and Duzce earthquakes: Earth Planets Space, 56, 933-944. https://doi.org/10.1186/bf03351791. [ Links ]

Bermúdez, M.A., Van der Beek, P., Bernet, M., 2011, Asynchronous miocene-pliocene exhumation of the central venezuelan andes: Geology 39, 139-142. https://doi.org/10.1130/G31582.1. [ Links ]

Bermúdez, M.A., Van der Beek, P.A., Bernet, M., 2013, Strong tectonic and weak climatic control on exhumation rates in the Venezuelan Andes : Lithosphere 5, 3-16. https://doi.org/10.1130/L212.1. [ Links ]

Bermúdez, M.A., Bernet, M., Kohn, B.P, Brichau, S., 2019, Exhumation-Denudation History of the Maracaibo Block, Northwestern South America: Insights from Thermochronology. In: Cediel, F., Shaw, R.P. (Eds.) Geology and Tectonics of Northwestern South America: Frontiers in Earth Sciences, Springer, Cham, 879-898. https://doi.org/10.1007/978-3-319-76132-9_13. [ Links ]

Boinet, T., Bourgois, J., Mendoza, H., 1989, La Falla de Bucaramanga (Colombia), su función durante la Orogenia Andina: Geología Norandina, 11, 3-10. [ Links ]

Brandon, M. T., Roden-Tice, M. K., Carver, J.I., 1998, Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State: Bulletin of the Geological Society of America, 110(8), 985-1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2. [ Links ]

Braun, J., 2003, PECUBE: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography: Computers and Geosciences, 29(6), 787-794. https://oi.org/10.1016/S0098-3004(03)00052-9. [ Links ]

Braun, J., Robert, X., 2005, Constraints on the rate of post-orogenic erosional decay from low-temperature thermochronological data: application to the Dabie Shan, China: Earth Surface Processes and Landforms, 30, 1203-1225. https://doi.org/10.1002/esp.1271. [ Links ]

Braun, J., Van Der Beek, P, Batt, G., 2006, Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data: Cambridge University Press. 258 p. https://doi.org/10.1017/CBO9780511616433. [ Links ]

Braun, J., Burbidge, D.R., Gesto, F.N., Sandiford, M., Gleadow, A.J.W., Kohn, B.P., and Cummins, P.R., 2009, Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database and low-T thermochronological data: Autralian Journal of Earth Sciences, 56, 99-110. https://doi.org/10.1080/08120090802546977. [ Links ]

Braun, J., Van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012, Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE: Tectonophysics, 524-525, 1-28. https://doi.org/10.1016/j.tecto.2011.12.035. [ Links ]

Bookhagen, B., Strecker, M. R., 2008, Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes: Geophysical Research Letters, 35(6), L06403. https://doi.org/10.1029/2007GL032011. [ Links ]

Burden, R., Faires, J., 2002, Numerical Analysis: Cengage Learning Publisher, 888 p. [ Links ]

Bustos, X., Bermúdez, M., Toro, G., Bernet, M., Rojas, O., Marín, M., 2013, Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia: Terra, 29(46), 43-67. [ Links ]

Campani, M., Herman, F., Mancktelow, N., 2010, Two- and three-dimensional thermal modeling of a low-angle detachment: Exhumation history of the Simplon Fault Zone, central Alps: Journal of Geophysical Research, 115(B10), B10420, 1-25. https://doi.org/10.1029/2009JB007036. [ Links ]

Cediel, F., Shaw, R., Cáceres, C., 2003, Tectonic assembly of the Northern Andean block. In C. Bartolini, R.T. Buffler, J. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG 79, 815-848. https://doi.org/10.1306/M79877C37. [ Links ]

Chen, Y.-W., Shyu, J. B. H., Chang, C.P., 2015, Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial cannel morphology: Tectonics, 34, 2249-2270. https://doi.org/10.1002/2014TC003795. [ Links ]

Dalman, E.M., 2015, Constraining neotectonic deformation of the Colombian sub-Andes, University of Kansas, Doctoral dissertation. [ Links ]

Danisík, M., McInnes, B. I. A., Kirkland, C. L., McDonald, B. J., Evans, N. J., Becker, T., 2017, Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals: Science Advances, 3(2), e1601121. https://doi.org/10.1126/sciadv.1601121. [ Links ]

Dengo, C., Covey, M., 1993, Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics: AAPG Bulletin 77(8), 1315-1337. https://doi.org/10.1306/BDFF8E7A-1718-11D7-8645000102C1865D. [ Links ]

Dey, S., Kaushal, R. K., Sonam, Jain, V., 2019, Spatiotemporal variability of neotectonic activity along the Southern Himalayan front: A geomorphic perspective: Journal of Geodynamics, 129, 237-246. https://doi.org/10.1016/j.jog.2018.09.003. [ Links ]

Ehlers, T. A., 2005, Crustal thermal processes and the interpretation of thermochronometer data, In Ehlers, T., Reiners, P. W., (ed.), Low Temperature Thermochronometry: Techniques, Interpretations, and Applications: Washington: Reviews in Mineralogy and Geochemistry, 58, 315-350. https://doi.org/10.1515/9781501509575-014. [ Links ]

England, P., Molnar, P., 1990, Surface uplift of rocks, and exhumation of rocks: Geology, 18, 1173-1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2. [ Links ]

Fabre, A., 1983, La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario Inferior: Geologia Norandina, 8, 49-61. [ Links ]

Flint, J.J., 1974, Stream Gradient as a Function of Order, Magnitude, and Discharge: Water Resources Research, 10, 969-973. https://doi.org/10.1029/WR010i005p00969. [ Links ]

Frohlich, C., Davis, S. D., 1993, Teleseismic b values; Or, much ado about 1.0: Journal of Geophysical Research , 98(B1), 631- 644, https://doi.org/10.1029/92JB01891. [ Links ]

Gerin, C., Gautheron, C., Oliviero, E., Bachelet, C., Mbongo Djimbi, D., Seydoux-Guillaume, A.M., Tassan-Got, L., Sarda, P., Roques, J., Garrido, F., 2017, Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales: Geochimica et Cosmochimica Acta, 197, 87-103. https://doi.org/10.1016/j.gca.2016.10.018. [ Links ]

Glotzbach, C., Van der Beek, P. A., Spiegel, C., 2011, Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data: Earth and Planetary Science Letters, 304(3-4), 417-430. https://doi.org/10.1016/j.epsl.2011.02.020. [ Links ]

Gómez, E., Jordan, T.E., Allmendinger, R.W., Cardozo, N., 2005, Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes: Geological Society of America Bulletin, 117, 1272-1292. https://doi.org/10.1130/B25456.1. [ Links ]

Gómez, J., Montes, N.E., Nivia, Á., Diederix, H., compiladores. 2015, Mapa Geológico de Colombia Escala 1: 1 000 000: Servicio Geológico Colombiano, 2 hojas. [ Links ]

Gutemberg, B., Richter, C. F., 1954, Seismicity of the Earth and Associated Phenomena: Princeton, New Jersey Press, 254 p. [ Links ]

Hack, J.T., 1973, Stream-profile analysis and streamgradient index: Journal of Research of the U.S. Geological Survey, 1(4), 421-429. [ Links ]

Hergarten, S., Kenkmann, T., 2019, Long-term erosion rates as a function of climate derived from the impact crater inventory: Earth Surface Dynamics, 7, 459-473. https://doi.org/10.5194/esurf-7-459-2019. [ Links ]

Herman, F., Braun, J., Dunlap, W., 2007, Tectonomorphic scenarios in the Southern Alps of New Zealand: Journal of Geophysical Research , 112, B04201, 1-25. https://doi.org/10.1029/2004JB003472. [ Links ]

Horton, B.K., Saylor, J.E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., Stockli, D.F., 2010, Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia: Geological Society of America Bulletin , 122(9-10), 1423-1442. https://doi.org/10.1130/b30118.1. [ Links ]

Hueck, M., Dunkl, I., Heller, B., Stipp Basei, M. A., Siegesmund, S., 2018, (U-Th)/He Thermochronology and Zircon Radiation Damage in the South American Passive Margin: Thermal Overprint of the Paraná LIP?:Tectonics, 37(10), 4068-4085. https://doi.org/10.1029/2018tc005041. [ Links ]

Irving, E. M., 1971, La evolución estructural de los Andes más septentrionales de Colombia: Boletín Geológico, 19(2), 1-90. [ Links ]

Jarvis, A., H.I. Reuter, A. Guevara, N., 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). [ Links ]

Julivert, M., 1970, Cover and basement tectonics in the Cordillera Oriental of Colombia, South America, and a comparison with some other folded chains: GSA Bulletin, 81(12), 3623-3646. https://doi.org/10.1130/0016-7606(1970)81[3623:cabt it]2.0.co;2. [ Links ]

Kammer, A., Sánchez, J., 2006, Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications: Journal of South American Earth Sciences , 21(4), 412-422. https://doi.org/10.1016/j.jsames.2006.07.006. [ Links ]

Kendall, M. G., Stuart, A., 1973, The Advanced Theory of Statistics, Volume 2: Inference and Relationship, Griffin, 521 p. [ Links ]

Kirby, E., Whipple, K., 2001, Quantifying differential rock-uplift rates via stream profile analysis: Geology, 29(5), 415-418. https://doi.org/10.1130/0091-7613(2001)029%3C0415:qdrurv%3E2.0.co;2. [ Links ]

Kirby, E., Whipple, K.X., 2012, Expression of active tectonics in erosional landscapes: Journal of Structural Geology, 44, 54-75. https://doi.org/10.1016/jjsg.2012.07.009. [ Links ]

Laske, G., Masters., G., Ma, Z., Pasyanos, M., 2013, Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust: Geophysical Research, 15, EGU2013-2658. [ Links ]

Manosalva-Sanchez, S.R., Naranjo-Merchón, W.E., Ríos-Reyes, C.A., Parra, R.A., Castellanos-Alarcon, O.M., 2017, Estudio petrogenético de las rocas metamórficas del Macizo de Floresta, Cordillera Oriental, Andes Colombianos: Boletín de Geología, 39(1), 83-103. http://dx.doi.org/10.18273/revbol.v39n1-2017004. [ Links ]

Mishra, A. K., Placzek, C., Jones, R., 2019, Coupled influence of precipitation and vegetation on millennial-scale erosion rates derived from 10Be: PloS ONE, 14(1), e0211325. https://doi.org/10.1371/journal.pone.0211325. [ Links ]

Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V., Jaramillo, J.V., 2008, Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia: GSA Bulletin , 120(7-8), 930-949. https://doi.org/10.1130/B26186.1. [ Links ]

Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., García, D., Stockli, D.F., 2010, Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems: AAPG Bulletin , 94(10), 1543-1580. https://doi.org/10.1306/01051009111. [ Links ]

Nuannin, P., Kulhanek, O., Persson, L., 2005, Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004: Geophysical Research Letters, 32, L11307. https://doi.org/10.1029/2005GL022679. [ Links ]

Parra, M., Mora, A., Jaramillo, C., Strecker, M.R., Sobel, E.R., Quiroz, L.I., Rueda, M., Torres, V., 2009a, Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia: Geological Society of America Bulletin , 121, 780-800. https://doi.org/10.1130/B26257.1. [ Links ]

Parra, M., Mora, A., Sobel, E.R., Strecker, M.R., Jaramillo, C., González, R., 2009b, Episodic orogenic-front migration in the northern Andes: constraints from low temperature thermochronology in the Eastern Cordillera, Colombia: Tectonics, 28, 1-27 https://doi.org/10.1029/2008TC002423. [ Links ]

Pérez-Gussinyé, M., Lowry, A. R., Phipps Morgan, J., Tassara, A., 2008, Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry: Geochemiatry, Geophysics, Geosystems, 9(2), Q02003. https://doi.org/10.1029/2007GC001786. [ Links ]

Pike, R.J., Wilson, S.E., 1971, Elevation-relief ratio, hypsometric integral, and geomorphic area- altitude analysis: GSA Bulletin , 82, 1079-1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2. [ Links ]

Ramírez-Arias, J. C., Mora, A., Rubiano, J., Duddy, I., Parra, M., Moreno, N., Casallas, W., 2012, The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology: Journal of South American Earth Sciences , 39, 112-137. https://doi.org/10.1016/j.jsames.2012.04.008. [ Links ]

Rizwan, S., Ahmed, S.R., Sameeni, S.J., Anam, B., 2016, Aplication of geospatial technology in the determination of neotectonics of Chitral Valley, Hindu Kush área northern: Science international (Lahore), 28(1),323-335. [ Links ]

Robert, X., Van Der Beek, P., Braun, J., Perry, C., Mugnier, J. L., 2011, Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low-temperature thermochronology and numerical modeling: Journal of Geophysical Research: Solid Earth, 116, B05202, 1-22. https://doi.org/10.1029/2010JB007893. [ Links ]

Sambridge, M., 1999a, Geophysical inversion with a Neighbourhood Algorithm-I. Searching a parameter space: Geophysical Journal International, 138, 479-494. https://doi.org/10.1046/j.1365-246x.1999.00876.x. [ Links ]

Sambridge, M., 1999b, Geophysical inversion with a Neighbourhood Algorithm-II. Appraising the ensemble: Geophysical Journal International , 138, 727-746. https://doi.org/10.1046/j.1365-246x.1999.00900.x. [ Links ]

Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A., Stockli, D.F., 2012, Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia: Tectonics, 31, 1-24. http://doi.org/10.1029/2011TC003089. [ Links ]

Sánchez, F., Barrea, A., Dávila, F. M., Mora, A., 2020, Fetkin-hydro, a new thermo-hydrological algorithm for low-temperature thermochronological modeling: Geoscience Frontiers, 12(3), 101074. https://doi.org/10.1016/j.gsf.2020.09.005. [ Links ]

Sarmiento-Rojas, L.F., Van Wess, J.D., Cloetingh, S., 2006, Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models: Journal of South American Earth Sciences , 21(4), 383-411. https://doi.org/10.1016/j.jsames.2006.07.003. [ Links ]

Saylor, J., Horton, B., Stockli, D., Mora, A., Corredor, J., 2012a, Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia: Journal of South American Earth Sciences , 39, 202-215. https://doi.org/10.1016/j.jsames.2012.04.009. [ Links ]

Saylor, J.E., Stockli, D.F., Horton, B.K., Nie, J., Mora, A., 2012b, Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia: Geological Society of America, Bulletin, 124(5-6), 762-79. https://doi.org/10.1130/B30534.1. [ Links ]

Schildgen, T.F., van der Beek, P.A., Sinclair, H.D., Thiede, R.C., 2018, Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology: Nature, 559, 89-93. https://doi.org/10.1038/s41586-018-0260-6. [ Links ]

Scholz, C. H., 1968, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes: Bulletin of the Seismological Society of America, 58, 399-415. [ Links ]

Schwarz, G., 1978, Estimating the Dimension of a Model: The Annals of Statistics, 6, 461-464. [ Links ]

Schwanghart, W., Kuhn, N. J., 2010, TopoToolbox: a set of Matlab functions for topographic analysis: Environmental Modelling & Software, 25, 770-781. https://doi.org/10.1016/j.envsoft.2009.12.002. [ Links ]

Senatorski, P., 2020, Gutenberg-Richter's b, Value and Earthquake Asperity Models: Pure and Applied Geophysics, 177, 1891-1905. https://doi.org/10.1007/s00024-019-02385-z. [ Links ]

Silva, A., Mora, A., Caballero, V., Rodriguez, G., Ruiz, C., Moreno, N., Parra, M., Ramirez-Arias, J.C., Ibáñez, M., Quintero, I., 2013, Basin compartmentalization and drainage evolution during rift inversion: evidence from the Eastern Cordillera of Colombia: Geological Society of London, Special Publications, 377, 369-409. https://doi.org/10.1144/SP377.15. [ Links ]

Siravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P, Maden, C., 2018, Constraints on the cenozoic deformation of the northern eastern cordillera, Colombia: Tectonics, 37(11), 4311-4337. https://doi.org/10.1029/2018TC005162. [ Links ]

Siravo, G., Fellin, M.G., Faccena, C., Maden, C., 2020, Transpression and build-up of the cordillera: the example of the Bucaramanga Fault (Eastern Cordillera, Colombia): Journal of the Geological Society, 177, 14-30. https://doi.org/10.1144/jgs2019-054. [ Links ]

Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2003, Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California: Geomorphology, 53, 97-127. https://doi.org/10.1016/S0169-555X(02)00349-5. [ Links ]

Spotila, J. A., 2005, Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts: Reviews in Mineralogy and Geochemistry ; 58(1), 449-466. https://doi.org/10.2138/rmg.2005.58.17. [ Links ]

Strahler, A.N., 1952, Hypsometric (area- altitude) analysis of erosional topography: Geological Society of America Bulletin , 63, 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2. [ Links ]

Sueoka, S., Ikuho, Z., Hasebe, N., Murakami, M., Yamada, R., Tamura, A., Tagami, T., 2019, Thermal fluid activities along the Mozumi-Sukenobu fault, central Japan, identified via zircon fission-track thermochronometry: Journal of Asian Earth Sciences: X, 2, 100011. https://doi.org/10.1016/j.jaesx.2019.100011. [ Links ]

Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Valencia, V., 2013, Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes: Geological Society, London, Special Publications , 377(1), 257-283. http://dx.doi.org/10.1144/SP377.10. [ Links ]

Toro, J., 1990, The Termination of the Bucaramanga Fault in the Cordillera Oriental, Colombia, University of Arizona, M.Sc. thesis, 59. [ Links ]

Turcotte, D.L., Schubert, G., 2002, Geodynamics: Applications of Continuum Physics to Geological Problems: New York, John Wiley and Sons, second edition, 464 p. [ Links ]

Ulloa, C., Guerra, A., Escovar, R., 1998., Geología Plancha 172 - Paz de Río. Escala 1:100.000: INGEOMINAS. Bogotá, Colombia. [ Links ]

Valla, P., Herman, F., Van der Beek, P.,Braun, J., 2010, Inversion of thermochronological history-I: theory and conceptual model: Earth and Planetary Science Letters , 295, 511-522. https://doi.org/10.1016/j.epsl.2010.04.033. [ Links ]

Van der Lelij, R., Spikings, R., Mora, A., 2016, Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America: Lithos, 248, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006. [ Links ]

Velandia, F., 2005, Interpretación de transcurrencia de las fallas de Soapaga y Boyacá a partir de imágenes Landsat TM: Boletín de Geología , 27(1), 81-94. [ Links ]

Velandia, F., Bermúdez, M.A., 2018, The transpressive southern termination of the Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis: Journal of Structural Geology , 115, 190-207. https://doi.org/10.1016/J.JSG.2018.07.020. [ Links ]

Velandia, F., García-Delgado, H., Zuluaga, C. A., López, J. A., Bermúdez, M. A., 2020, Present-day structural frame of the Santander Massif and Pamplona Wedge: The interaction of the Northern Andes: Journal of Structural Geology , 137, 104087. https://doi.org/10.1016/j.jsg.2020.104087. [ Links ]

Whipple, K.X., 2009, The influence of climate on the tectonic evolution of mountain belts: Nature Geoscience, 2, 97-104. https://doi.org/10.1038/ngeo413. [ Links ]

Wiemer, S., Schorlemmer, D., 2007, ALM: An asperity-based likelihood model for California: Seismological Research Letters, 78, 134-140. https://doi.org/10.1785/gssrl.78.1.134. [ Links ]

Wildman, M., Brown, R., Beucher, R., Persano, C., Stuart, F., Gallagher, K., Schwanethal, J., Carter, A., 2016, The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology: Tectonics, 35, 511-545. https://doi.org/10.1002/2015TC004042. [ Links ]

Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D., 2006, Tectonics from topography: Procedures, promise, and pitfalls. In Sean D. Willett, Niels Hovius, Mark T. Brandon, Donald M. Fisher (eds.), Tectonics, Climate, and Landscape Evolution: Geological Society of America, Special Paper, 55-74. https://doi.org/10.1130/2006.2398(04). [ Links ]

Wolfe, M. R., Stockli, D. F., 2010, Zircon (U-Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon: Earth and Planetary Science Letters , 295(1), 69-82. https://doi.org/10.1016/j.epsl.2010.03.025. [ Links ]

Zeitler, P.K., Enkelmann, E., Thomas, J.B., Watson, E.B., Ancuta, L.D., Idleman, B.D., 2017, Solubility and trapping of helium in apatite: Geochimica et Cosmochimica Acta , 209, 1-8. https://doi.org/10.1016/j.gca.2017.03.041. [ Links ]

Cómo citar este artículo: Meléndez Granados, H. L., Bermúdez, M.A., García-Delgado, H., Fonseca, H., Marín-Cerón, M. I., 2021, Levantamiento orogénico alrededor del bloque Soapaga, Cordillera Oriental de Colombia: Inferencias de modelado termocinemático, geomorfología y sismicidad: Boletín de la Sociedad Geológica Mexicana, 73 (2), A141220. http://dx.doi.org/10.18268/BSGM2021v73n2a141220.

La revisión por pares es responsabilidad de la Universidad Nacional Autónoma de México.

Recibido: 30 de Agosto de 2020; Revisado: 15 de Octubre de 2020; Aprobado: 10 de Noviembre de 2020

* Autor para correspondencia: (H. Meléndez Granados) hilda.melendez@uptc.edu.co

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons