SciELO - Scientific Electronic Library Online

 
 número131Diversidad de algas marinas bentónicas del litoral de Veracruz, MéxicoDescripción morfológica y molecular de un nuevo híbrido de Persea americana (Lauraceae) del sur del Estado de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Acta botánica mexicana

versión On-line ISSN 2448-7589versión impresa ISSN 0187-7151

Act. Bot. Mex  no.131 Pátzcuaro  2024  Epub 17-Ene-2025

https://doi.org/10.21829/abm131.2024.2326 

Artículos de investigación

Discovery of Pleurotus cystidiosus (Agaricales, Pleurotaceae) in the north of Mexico

Hallazgo de Pleurotus cystidiosus (Agaricales, Pleurotaceae) en el norte de México

Eduardo Hernández-Navarro1  3 
http://orcid.org/0000-0002-0031-6932

Damián López-Peña2 
http://orcid.org/0000-0002-1140-2289

Marcos Lizárraga Escobar2 
http://orcid.org/0000-0002-6909-7002

1Universidad Nacional Autónoma de México, Instituto de Biología, Laboratorio de Micología C-105, circuito Zona Deportiva s.n., Ciudad Universitaria, 04510 Coyoacán, Cd.Mx., Mexico.

2Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Anillo Envolvente del Pronaf y Estocolmo s.n., 32300 Ciudad Juárez, Chihuahua, Mexico.


Abstract:

Background and Aims:

Some species of Pleurotus form anamorphs that produce coremia and arthrospores, which are classified in the subgenus Coremiopleurotus and are morphologically very similar. In Mexico, seven species of the genus are known; however, only P. smithii, described from Mexico City, is known to form coremia. Recent collections of Pleurotus from Chihuahua, Mexico, showed distinct characteristics from the known species for the country, whose morphological and molecular characterization allowed us to identify P. cystidiosus in Mexico. The objective of this work was to document the presence of P. cystidiosus in Mexico and provide a detailed description of the specimens found in the country.

Methods:

The material was collected in Ciudad Juárez, Chihuahua, Mexico. Specimens were characterized macro- and microscopically through in situ photographs, polyfocal, and light microscopy. Morphological identification was performed using specialized literature. DNA extraction was carried out following a 3% CTAB protocol. The ITS region was amplified using the primer pairs ITS5/ITS4. Phylogenetic analyses were conducted using Maximum Likelihood and Bayesian Inference.

Key results:

Pleurotus cystidiosus, a species previously unreported in Mexico, is morphologically and taxonomically described, confirmed with barcode sequences. The species is distinguished by the presence of abundant clavate to pyriform pleurocystidia and subglobose cheilocystidia in the teleomorph, as well as the formation of coremia with a white stipe, black head, and segments of arthrospores up to 17-25 × 5-7.5 µm in the anamorph.

Conclusions:

The presence of P. cystidiosus in the north of Mexico is confirmed. With this study, the number of known Pleurotus species for Mexico increases to eight.

Key words: arid zones; Basidiomycota; coremia; drylands fungi; oyster fungus

Resumen:

Antecedentes y Objetivos:

Algunas especies de Pleurotus forman anamorfos que producen coremios y artrosporas, las cuales están clasificadas en el subgénero Coremiopleurotus y son muy similares morfológicamente. En México, se conocen siete especies del género; sin embargo, solo P. smithii, descrita de la Ciudad de México, es conocida por formar coremios. Colectas recientes de Pleurotus de Chihuahua, México, mostraron características distintas de las especies conocidas para el país, cuya caracterización morfológica y molecular nos permitió identificar a P. cystidiosus en México. El objetivo de este trabajo fue documentar la presencia de P. cystidiosus en México y brindar una descripción detallada de los ejemplares encontrados en el país.

Métodos:

El material fue recolectado en Ciudad Juárez, Chihuahua, México. Los ejemplares fueron caracterizados macro y microscópicamente mediante fotografías in situ, microscopía polifocal y de luz. La identificación morfológica se realizó mediante literatura especializada. La extracción de ADN se realizó siguiendo un protocolo de CTAB al 3%. La región de ITS fue amplificada con los pares de cebadores ITS5/ITS4. Los análisis filogenéticos fueron llevados a cabo por Máxima Verosimilitud e Inferencia Bayesiana.

Resultados clave:

Pleurotus cystidiosus, una especie que no había sido previamente reportada en México, es descrita morfológica y taxonómicamente, confirmada con secuencias de código de barras. La especie se distingue por la presencia de abundantes pleurocistidios clavados a piriformes, y queilocistidios subglobosos en el teleomorfo, así como por la formación de coremios con estípite blanco, cabeza negra y segmentos de artrosporas de hasta 17-25 × 5-7.5 µm en el anamorfo.

Conclusiones:

Se confirma la presencia de P. cystidiosus en el norte de México. Con este estudio aumenta a ocho el número de especies de Pleurotus conocidas para México.

Palabras clave: Basidiomycota; coremios; hongos de zonas secas; hongo ostra; zonas áridas

Introduction

Pleurotus (Fr.) P. Kumm. (Agaricales, Pleurotaceae) is a genus of saprophytic fungi of great importance since most of its species are edible, and some are considered medicinal (Lin et al., 2022). Several species can be cultured on diverse agricultural and industrial waste materials, which has led to the cultivation of several species of Pleurotus representing a viable source of income through the production of low-cost food with high quality (Gregory et al., 2007; Raman et al., 2021). Species in this genus are characterized by the flabelliform to dimidiate pileus, attached to the substrate by a short, lateral, sometimes eccentric stipe, which occasionally is absent; gills are decurrent, tight or widely separated, with margin smooth to crenate and involute; hyphal system can be monomitic or dimitic and the spore print is whitish, cream color, or lilac (Flecha Rivas et al., 2014).

Pleurotus species could be confused with other genera such as Hohenbuehelia S. Schulz., which has rubbery and flexible fruiting bodies and thick-walled sterile cells on the gills; Panus Fr. and Panellus P. Karst. characterized by their solid fruiting bodies with a hairy cap surface, and amyloid spores; and Phyllotopsis E.-J. Gilbert & Donk ex Singer, which has pinkish allantoid spores (Arora, 1986). Furthermore, Lentinus Fr. can also be confused with some of the previous genera; nevertheless, it differs due to its elastic fruiting bodies when young, becoming leathery at maturity, and gills typically with serrated edges (Moreno, 1975).

Due to these problems with the determination of the species and the taxonomic relationships with similar genera, until the year 2000, 23 species and varieties of Pleurotus were reported in Mexico. The taxonomic revision of Guzmán (2000) reduced from the 23 species to only seven. From those, two are now accepted as Lentinus species (Index Fungorum, 2023): L. scleropus (Pers.) Fr. (= P. hirtus Guzmán) and L. levis (Berk. & M.A. Curtis) Murrill (= P. levis (Berk. & M.A. Curtis) Singer). Then, the five known Pleurotous species in Mexico, recognized by Guzmán (2000) are P. bajacalifornicus Esteve-Rav., G. Moreno & N. Ayala (Moreno et al., 1993); P. djamor var. djamor (Rumph. ex Fr.) Boedijn (Guzmán et al., 1993); P. opuntiae (Durieu & Lév.) Sacc. (Estrada-Torres and Aroche, 1987); P. ostreatus (Jacq.) P. Kumm. (Guzmán, 1977) and P. smithii Guzmán (Guzmán, 1975). In addition, P. dryinus (Pers.: Fr.) Kumm. was reported by Guzmán (1975) and Valenzuela et al. (1981), but Guzmán (2000) considered it as a non-recognized species in “a complex species in Mexico”. Moreno-Fuentes et al. (1994) also reported P. dryinus from Chihuahua, the same state where later Moreno-Fuentes et al. (2004) recorded P. floridanus Singer, thus resulting in a total of seven species of Pleurotus in Mexico.

Some species of Pleurotus are known to produce anamorphs with arthrospores on coremia (=synnemata) (Hilber, 1982). Such anamorphs were previously placed within the genus Antromycopsis Pat. & Trab. and they were classified as Hyphomycetes (Deuteromycotina) (Stalpers et al., 1991). However, Camino-Vilaró and Mena-Portales (2019) proposed to conserve the species under the name Pleurotus cystidiosus O.K. Mill. Hilber (1982) grouped species of Pleurotus with coremia formation under the subgenus Coremiopleurotus Hilber (Capelari and Fungaro, 2003) and assigned P. cystidiosus (1969) as its type species. Other species with coremia formation are P. abalonus Y.H. Han, K.M. Chen & S. Cheng; P. australis Cooke & Massee; P. fuscosquamulosus Reid & Eicker; P. purpureo-olivaceus Segedin, P.K. Buchanan & J.P. Wilkie; and P. smithii (Guzmán et al., 1980; Capelari and Fungaro, 2003; Lin et al., 2022). This latter, described from Mexico City, is the only member of Coremiopleurotus known from Mexico. In recent sampling carried out by the authors of the present work, some Pleurotus specimens with the formation of coremia were observed and collected in Ciudad Juárez, Chihuahua, Mexico, whose morphological and molecular characterization led them to report them as P. cystidiosus as a new record for Mexico. Hence, the objective of this work is to document the presence of P. cystidiosus in Mexico and provide a detailed description of the specimens found in the country.

Materials and Methods

Fungal material, isolation, and morphological characterization

Basidiomata were observed on an Ulmus sp. tree in the urban zone of Ciudad Juárez, in Chihuahua State, Mexico (31°44'22.6"N; 106°26'33.3"W) (Fig. 1) and collected in September 2021 and August 2022. To isolate a strain, portions of context from the fruiting bodies were inoculated in Petri dishes with potato dextrose agar (PDA) in aseptic conditions and maintained in the dark at 25±1 °C until full colonization. The shape, color, and size of basidiomata were recorded in fresh specimens. Microscopical analyses were carried out by manual cuts of different parts of the basidiomata and coremia, mounted in 5% KOH and observed with a Nikon C-DS stereo microscope (Tokyo, Japan) and a Nikon Eclipse E200 microscope (Tokyo, Japan), equipped with a Nikon CoolPix 4500 camera (Tokyo, Japan). The coremia grown in Petri dishes were photographed using a polyfocal microscope Leica Z16 APO A (Wetzlar, Germany) and processed in the Leica Application Suite v. 4.3 software (Wetzlar, Germany).

Figure 1: Collection location of Pleurotus cystidiosus O.K. Miller, specimens in Chihuahua, Mexico. 

The specimens studied are deposited in the herbarium MEXU (Thiers, 2024), with duplicates in the UACJ herbarium of the Universidad Autónoma de Ciudad Juárez, Mexico.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was isolated from a small sample of mycelium that was cultivated on a PDA medium following a CTAB 3% extraction protocol (Doyle and Doyle, 1987). The mycelium was placed in a 2 ml tube with a Sterilized tungsten Sphere, frozen in liquid nitrogen, and ground with a QIAGEN TissueLyser LT (Hilden, Germany). After adding 500 μl of CTAB and 2 μl of β-mercaptoethanol per sample, the tubes were incubated at 45 °C for 30 minutes at 300 rpm in an Eppendorf Thermomixer C (Hamburg, Germany). Next, 500 μl of SEVAG (chloroform: isoamyl alcohol; 24:1) was added and stirred for 30 minutes at 85 rpm in a Fisher Clinical Rotator (Hampton, USA). The mixture was centrifuged at 13000 × g for 10 minutes in an Eppendorf centrifuge 5424R (Hamburg, Germany). The supernatant was transferred to a 1.5 ml tube, and 500 μl of isopropanol was added, gently mixed, and stored at -20 °C for one hour. Subsequently, the mixture was centrifuged for 10 minutes at 12000 × g, in a Eppendorf centrifuge 5424R (Hamburg, Germany) and the supernatant was discarded. The pellet was washed with 70% EtOH at -20 °C, vacuum-dried for 5 minutes, and suspended in 50 μl of ultrapure water. The sample was quantified using a NanoDrop 2000 instrument (Waltham, USA), and its integrity was visually verified on a 1% agarose gel stained with RedGel™ using an Analytik Jena UVP transilluminator (Jena, Germany).

The ITS5 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS4 (5′-GGAAGTAAAAGTCGTAACAAGG-3′) were used to amplify the complete ITS1-5.8S-ITS2 region (Schoch et al., 2012) using the PCR Mix (5’BIO, Mexico) and a Thermofisher Scientific Veriti Thermocycler (Waltham, USA). The PCR amplicons were visualized on a 1% agarose gel stained with RedGel™ and the successful amplicons underwent treatment with ExoSAP-IT™ according to the instructions provided by the manufacturer. Clean PCR reactions were sequenced at both ends in the Laboratorio de Secuenciación Genómica de la Biodiversidad of the Laboratorio Nacional de Biodiversidad (LANABIO) of the Instituto de Biología, Universidad Nacional Autónoma de México.

Phylogenetic analyses

The obtained sequence was assembled and curated by inspecting their chromatograms in Sequencher software v. 5.2.3 (Ann Arbor, USA). Reference sequences from specialized literature (Zervakis et al., 2004; 2019; Yang et al., 2007; Horisawa et al., 2013; Liu et al, 2015; Shnyreva and Shnyreva, 2015; Barh et al., 2019; Lin et al., 2022) were downloaded from the National Center for Biotechnology Information (GenBank, 2024) (Table 1), and aligned using the online version of MAFFT v. 7 (Katoh et al., 2002, 2017; Katoh and Standley, 2013).

Table 1: Species, vouchers, localities, and GenBank (2024) accessions of the Pleurotus (Fr.) P. Kumm. specimens for the phylogenetic analysis. The Agaricus and Psathyrella accessions were used as outgroups. The sequence obtained in this study is marked in bold. 

Taxon Voucher/Strain Locality ITS Accession Number
Agaricus bisporus (J.E. Lange) Imbach CBS 11668 USA MH859080
Pleurotus abalonus Y.H. Han, K.M. Chen & S. Cheng A1 China JN671965
Pleurotus abalonus Y.H. Han, K.M. Chen & S. Cheng 149 China KX688474
Pleurotus abalonus Y.H. Han, K.M. Chen & S. Cheng ATCC 28787 Taiwan AY315798
Pleurotus abalonus Y.H. Han, K.M. Chen & S. Cheng CBS 100129 China NR103594
Pleurotus abalonus Y.H. Han, K.M. Chen & S. Cheng CGMCC 37470 China KX787086
Pleurotus abieticola R.H. Petersen & K.W. Hughes 3509 China MK209085
Pleurotus abieticola R.H. Petersen & K.W. Hughes HMJAU56580 China MT163335
Pleurotus abieticola R.H. Petersen & K.W. Hughes HKAS45570 China KP771697
Pleurotus abieticola R.H. Petersen & K.W. Hughes HKAS45720 China KP771696
Pleurotus abieticola R.H. Petersen & K.W. Hughes HKAS46100 China KP771695
Pleurotus australis Sacc. CBS 100127 China EU424276
Pleurotus cystidiosus O.K. Mill. CBS 29735 USA AY315766
Pleurotus cystidiosus O.K. Mill. FP1683 USA AY315776
Pleurotus cystidiosus O.K. Mill. D412, D413, D417, D419, D420 USA AY315774, AY315770, AY315773, AY315771, AY315767
Pleurotus cystidiosus O.K. Mill. VT1780 USA AY315769
Pleurotus cystidiosus O.K. Mill. CCBAS 466 USA FJ608592
Pleurotus cystidiosus O.K. Mill. AG 55/466 CCBAS Russia FJ608592
Pleurotus cystidiosus O.K. Mill. P19, P25 China EF437221 KY962441
Pleurotus cystidiosus O.K. Mill. ATCC28597 China EF514244
Pleurotus cystidiosus O.K. Mill. MEXU 30551 Mexico OR532762
Pleurotus cystidiosus O.K. Mill. IFO30784 Korea AY265818
Pleurotus cystidiosus O.K. Mill. NBRC 30607 Japan AB733141
Pleurotus cystidiosus O.K. Mill. ATCC 28598 South Africa AY315777
Pleurotus dryinus (Pers.) P. Kumm. AG I/467, AG II/468, AG III/470 Russia KF932722, KF932723, KF932724
Pleurotus dryinus (Pers.) P. Kumm. TENN 7947 Denmark AY450343
Pleurotus dryinus (Pers.) P. Kumm. P45, P99 China KY962461, MG282439
Pleurotus fuscosquamulosus D.A. Reid & Eicker EGDA Pl23 Egypt MW915606
Pleurotus fuscosquamulosus D.A. Reid & Eicker LGAM P50 Grece KF280330
Pleurotus salmoneostramineus Lj.N. Vassiljeva P36 China KY962452
Pleurotus salmoneostramineus Lj.N. Vassiljeva YL1 China AY728273
Pleurotus smithii Guzmán CCRC 36229, CBS 68982 Mexico AY265851
Pleurotus smithii Guzmán CBS 68082 Mexico EU424317
Pleurotus smithii Guzmán ATCC 46391 Mexico AY315784
Pleurotus tuber-regium (Fr.) Singer MCCT P7 India OQ916341
Pleurotus tuber-regium (Fr.) Singer PYKM100 India OQ891321
Pleurotus tuber-regium (Fr.) Singer MCCT AP2 India OQ920982
Psathyrella secotioides G. Moreno, Heykoop, Esqueda & Olariaga AH31746 Mexico KR003281

The alignments were reviewed in Mesquite v. 3.81 (Maddison and Maddison, 2023), followed by minor manual adjustments to ensure character homology among the taxa. The matrices consisted of 51 sequences of ITS and included 712 positions. Phylogenetic inferences were estimated using the Maximum Likelihood (ML) method in RAxML v. 8.2.10 (Stamatakis, 2014) with a GTR+G nucleotide substitution model with 1000 bootstrap resampling replicates performed with the GTR+G model.

Bayesian analysis was conducted using Mr Bayes v. 3.2.6 × 64 (Huelsenbeck and Ronquist, 2001). The information block for the matrix included two simultaneous runs, four Monte Carlo chains, a temperature set at 0.2, and a sampling of 10 million generations (standard deviation ≤0.1) with trees sampled every 1000 generations. The two simultaneous Bayesian runs continued until convergence parameters were met, and the standard deviation fell below 0.0001 after 10 million generations. The final tree was edited using FigTree v. 1.4.4 (Rambaut, 2018).

Results

We successfully amplified and sequenced the ITS region of the Pleurotus collection from Chihuahua (GenBank accession of the ITS sequence: OR532762). The initial BLAST yielded similarity (>99%) with P. cystidiosus from voucher specimens and isolate strains. Both Bayesian and Maximum Likelihood analyses (Fig. 2) grouped our sequence as P. cystidiosus, supporting the existence of this distinctive taxon in the north of our country (1 Bayesian posterior probability (PP) and 98% bootstrap resampling values for ML).

Figure 2: Phylogram of Bayesian inference (BI) tree from the ITS sequence data of 50 specimens. The numbers above branches represent Bootstrap Values (BS) for Maximum Likelihood and Bayesian Posterior Probabilities (PP), respectively. The scale bar represents the expected number of nucleotide substitutions per site. The sequence obtained in this study is in bold. Accession numbers of GenBank (2024) are indicated in each sequence. 

Taxonomy

Basidiomycota

Agaricomycetes

Agaricales

Pleurotaceae

Pleurotus cystidiosus O.K. Mill. Mycologia 61: 889, 1969. Figs. 3, 4.

Figure 3: Pleurotus cystidiosus O.K. Miller, teleomorph. A. basidiome on an Ulmus sp. trunk; B. basidiome on the base of an Ulmus L. tree; C. pleurocystidia; D. cheilocystida. 

Figure 4: Pleurotus cystidiosus O.K. Miller, anamorph. A. coremia on basidiome; B. polyphocal microscopy of coremia on PDA; C. coremia in light microscopy; D. artrospores in light microscopy. 

= Stilbum macrocarpum Ellis & Everh., J. Mycol. 2(9): 103. 1886. (Ellis & Everh.) Stalpers, Seifert & Samson, Can. J. Bot. 69(1): 7. 1991.

= Antromycopsis broussonetiae Pat. & Trab., Bull. Soc. Mycol. Fr. 13: 215. 1897.

HOLOTYPE: USA. Indiana, Brown County, Hoosier National Forest, F.H. Berry CS-66-083-2-A (BFDL).

Teleomorph

Basidiomata pileate, substipitate to sessile, growing in overlapping groups of up to 15 individuals; pileus plane-convex, flabelliform, 60-130 mm in diameter, surface smooth to wrinkled, whitish when young, turning yellowish-cream to buff color when mature; lamellae decurrent, tight, white when young, turning yellowish-cream when mature; pseudostipe lateral, 5-10 mm long, eccentric; basidiospores 14-17.5 × 4-5 µm, cylindric, hyaline, inamyloid, thin-walled; basidia 40-65 × 7-10 µm, clavate; pleurocystidia 40-50 × 7-8 µm, cylindric, hyaline to light brown, with abundant granular content; cheilocystidia 20-28 × 8-10 µm, subglobose to pyriform, thin-walled, hyaline to ochraceous; hyphal system monomitic; pileus trama formed by generative, thin-walled, clamped hyphae 5-12 µm wide, slightly branched hyphae, occasionally with widened endings; cuticle of the pileus with abundant pileocystidia 28-40 × 8-10 µm, clavate to cylindrical, with a rounded apex, lamellae trama with clamped, hyaline hyphae 55-18 µm wide, mixed with amorphous, ochraceous elements.

Anamorph

Coremia developed abundantly on the surface of culture medium (PDA), gregarious, or occasionally in groups attached by the base, 0.8-2.5 mm in height, with a white stipe and apex with a droplet of dark liquid; stipe formed by hyaline hyphae, septate and clamped, which fragment forming cylindric arthrospores, brown or sometimes hyaline, 17-25 × 5-7.5 µm.

Habit: lignicolous, growing on an Ulmus sp. tree.

Distribution: Algeria (Stalpers et al., 1991), Argentina (Lechner et al., 2004), Brazil (Capelari, 1999), China (Zervakis et al., 2004), Cuba (Camino-Vilaró et al., 2018), Greece (Zervakis et al., 1992), India (Zervakis et al., 2004), Indonesia (Stalpers et al., 1991), Israel (Stajić et al., 2003), Japan (Zervakis et al., 2004), Pakistan (Hussain et al., 2015), Philippines, South Africa (Zervakis et al., 2004), Russia (Shnyreva and Shnyreva, 2015), Taiwan (Jong and Peng, 1975), Thailand (Zervakis et al., 2004), and United States of America (Miller, 1969).

Specimens examined: MEXICO. Chihuahua, municipality Ciudad Juárez, growing at the base of an Ulmus sp. tree, 6.IX.2021, M. Lizárraga s.n. (UACJ 3396), loc. cit., 25.VIII.2022, M. Lizárraga s.n. (UACJ 3397); loc. cit., M. Lizárraga s.n. (MEXU 30551). GenBank accession of the ITS sequence: OR532762.

Notes: Pleurotus cystidiosus can be easily confused with P. smithii, which also forms coremia. These two species can be differentiated by the presence of abundant pleurocystidia in P. cystidiosus, rarely only in the young stages of P. smithii, subglobose cheilocystidia in the teleomorph of P. cystidiosus, absent in P. smithii; as well as by the shorter segments 5-11(-15) × 3.2-5(-6) µm of conidiophore elements in the anamorph of P. smithii (Guzmán et al., 1991). Other very similar species that also form coremia are P. abalonus which differs by its smaller basidiospores (10.5-13.5 × 3.8-5 µm) and slender cheilocystidia (7-8.5 µm, diam.) (Guzmán, 2000). Pleurotus purpureo-olivaceus presents spherical and sessile conidiomata and is restricted to Australia and New Zealand, as is P. australis, which is distinguished macroscopically by its dark reddish-brown pileus and microscopically by its smaller basidiospores (10.5-14 × 4-6 µm), pleurocystidia, and cheilocystidia (16-25 × 5 µm) (Segedin et al., 1995). Pleurotus fuscosquamulosus presents cylindrical to clavate cheilocystidia bearing an apical sterigma-like structure with an apical small capitulum (Torta et al., 2019), absent in our collections of P. cystidiosus.

Discussion

The species of Pleurotus included in the subgenus Coremiopleurotus are very similar and, therefore, difficult to distinguish using only morphological features. Accordingly, it is necessary to complement taxonomic studies with ITS sequences to delimit these species correctly. The close relationship between P. cystidiosus and P. smithii has been discussed from morphological and molecular perspectives. Capelari and Fungaro (2003) considered them synonyms based on Random Amplified Polymorphic DNA (RAPD). Zervakis et al. (2004) later established taxonomic independence using ITS sequences. Currently, the rDNA ITS region is considered the universal barcode for fungal species recognition (Schoch et al., 2012), and recent phylogenetic studies on the genus Pleurotus have shown the independence of both species and the close relationships within the subgenus, nowadays considered within clade one by Lin et al. (2022).

It is important to highlight the following observations of Pleurotus cystidiosus cited from Mexico: Sobal et al. (2007) listed a strain (CP-18) determined as P. cystidiosus from Veracruz, Mexico; however, the subsequent examination of the ITS sequence obtained from this sample confirmed its identity as P. smithii and no P. cystidiosus (Huerta et al., 2010). On the other hand, Camino-Vilaró et al. (2018) mentioned that P. cystidiosus is present in Mexico, referring to Guzmán et al. (1991). However, in this last article, these authors compared the material of P. cystidiosus from the USA with the Mexican material of P. smithii, the reason why in the present work, the occurrence of P. cystidiosus in Mexico is confirmed and supported by barcode sequences.

The species exhibits a broad geographical range, as it has been documented in numerous countries across the Americas, Eurasia, and Africa (Miller, 1969; Jong and Peng, 1975; Stalpers et al., 1991; Zervakis et al., 1992; 2004; Capelari, 1999; Stajić et al., 2003; Lechner et al., 2004; Hussain et al., 2015; Shnyreva and Shnyreva, 2015; Camino-Vilaró et al., 2018). Nevertheless, some reports lack barcoding sequences, such as the ones from Argentina (Lechner et al., 2004) and Brazil (Capelari, 1999). Barcode sequences are necessary to assess the global distribution of the species and validate the unsequenced Pleurotus species from Mexico. Pleurotus cystidiosus has been found on various hosts or substrates, including Ficus carica L., Populus deltoides W. Bartram ex Marshall, Liquidambar styraciflua L., Quercus texana Buckley, Acer rubrum L., Zerkova serrata (Thunb.) Makino, Aphananthe aspera (Thunb.) Planch., and Koelreuteria henryi Dümmer (Zervakis et al., 1992). Our material was collected from an Ulmus sp. tree. All this suggests that P. cystidiosus exhibits a wide host compatibility, indicating its ability to decompose various wood substrates.

From a biotechnological perspective, P. cystidiosus is a poorly studied species worldwide, unlike other species of the genus. Among the available studies, some carbon sources, different temperatures, and culture media have been evaluated, resulting in sucrose and 28 °C the best; and all the culture media evaluated showed no significant differences in mycelial growth (Hoa and Wang, 2015). In addition, various agroindustrial waste materials, including sugarcane bagasse (SB), corncob (CC), and sawdust from Acacia sp. wood, have been demonstrated to be effective for production of fruiting bodies; the most favorable outcomes were observed when using SB and CC (Hoa et al., 2015). Hoa et al. (2017) found that total phenolic contents and antioxidant activity depended on substrate formulas and drying methods. García et al. (2020) obtained a good amount of total phenolic contents and high antioxidant activity in P. cystidiosus extracts.

Despite the information shown above, there are no studies on the content of chitin, chitosan, or any other polysaccharide or metabolite with biological activity or biotechnological potential. For the previously mentioned reasons, this is an opportunity to take advantage of our fungal resources in Mexico's arid and semiarid zones.

Conclusions

Pleurotus cystidiosus has a wide distribution and host range, and it can be mistaken for P. smithii. However, the presence of pleurocystidia in young states and long cylindrical cheilocystidia in the teleomorph of P. cystidiosus, separates it from P. smithii and other members of Coremiopleurotus. ITS barcode sequences are effective for the identification of these closely related species. The number of Pleurotus species known from Mexico rises to eight.

Acknowledgments

We thank the following members of Laboratorio de Secuenciación Genómica de la Biodiversidad of the Laboratorio Nacional de Biodiversidad (LANABIO) of the Instituto de Biología, Universidad Nacional Autónoma de México (IBUNAM): Lidia Cabrera for her technical support during tissue pulverization for DNA extraction, Susana Guzmán Gómez for her technical support in acquiring macroscopic photographs, and Laura Márquez and Nelly López Ortiz for their technical assistance in the sequencing process.

Literature cited

Arora, D. 1986 Mushrooms demystified. A comprehensive guide to the Fleshy Fungi. Second edition. Ten Speed Press. Berkeley, USA. Pp. 959. [ Links ]

Barh, A., V. P. Sharma, S. Kamal, M. Shirur, S. K. Annepu, A. Kumar and R. C. Upadhyay. 2019. Speciation of cultivated temperate and tropical Pleurotus species - an in silico prediction using conserved sequences. Mushroom Research 28(1): 31-37. DOI: https://doi.org/10.36036/MR.28.1.2019.91990 [ Links ]

Camino-Vilaró, M., H. N. Blanco and J. Mena-Portales. 2018. First Cuban record of Pleurotus cystidiosus (Agaricales: Pleurotaceae) and its asexual morph. Revista del Jardín Botánico Nacional 39: 75-77. [ Links ]

Camino-Vilaró, M. and J. Mena-Portales. 2019. Proposal to conserve the name Pleurotus cystidiosus against Stilbum macrocarpum (Antromycopsis macrocarpa) and A. broussonetiae (Basidiomycota: Agaricomycetes: Agaricales: Pleurotaceae). TAXON 68(5): 1115. DOI: https://doi.org/10.1002/tax.12140 [ Links ]

Capelari, M. 1999. First record of Antromycopsis macrocarpa for Brazil. Mycotaxon 72: 101-105. [ Links ]

Capelari, M. and M. H. P. Fungaro. 2003. Determination of biological species and analysis of genetic variability by RAPD of isolates of Pleurotus subgenus Coremiopleurotus. Mycological Research 107(9): 1050-1054. DOI: https://doi.org/10.1017/s0953756203008153 [ Links ]

Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19(1): 11-15. [ Links ]

Estrada-Torres, A. and M. Aroche. 1987. Acervo etnomicológico en tres localidades del Municipio de Acambay, Estado de México. Revista Mexicana de Micología 3: 109-13l. DOI: https://doi.org/10.33885/sf.1987.3.691 [ Links ]

Flecha Rivas, A., B. De Madrignac and M. Campi. 2014. El género Pleurotus (Pleurotaceae-Basidiomycota) en Paraguay. Steviana 6: 70-79. [ Links ]

Garcia, K., C. J. Garcia, R. Bustillos and R. M. Dulay. 2020. Mycelial biomass, antioxidant, and myco-actives of mycelia of abalone mushroom Pleurotus cystidiosus in liquid culture. Journal of Applied Biology & Biotechnology 8(2): 94-97. DOI: https://doi.org/10.7324/JABB.2020.80215 [ Links ]

GenBank. 2024. National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/genbank/ (consulted February, 2024). [ Links ]

Gregori, A., M. Švagelj and J. Pohleven. 2007. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technology & Biotechnology 45(3): 236-247. [ Links ]

Guzmán, G. 1975. New and interesting species of Agaricales of Mexico. In: Bigelow, H. E. and H. D. Thiers (eds.). Studies on higher fungi. J. Cramer. Vaduz, Liechtenstein. Pp. 99-118. [ Links ]

Guzmán, G. 1977. Identificación de los hongos: comestibles, venenosos, alucinantes y destructores de la madera. Ed. Limusa. México, D.F., México. 236 pp. [ Links ]

Guzmán, G. 2000. Genus Pleurotus (Jacq.: Fr.) P. Kumm. (Agaricomycetideae): diversity, taxonomic problems, and cultural and traditional medicinal uses. International Journal of Medicinal Mushrooms 2(2): 95-123. DOI: https://doi.org/10.1615/IntJMedMushr.v2.i2.10 [ Links ]

Guzmán, G., R. Valenzuela and A. Canale. 1980. Primer registro de Pleurotus smithii de América del Sur y obtención de la fase asexual de la cepa mexicana. Boletín de la Sociedad Mexicana de Micología 14: 17-26. DOI: https://doi.org/10.33885/sf.1980.2.517 [ Links ]

Guzmán, G., V. M. Bandala and L. Montoya. 1991. A comparative study of teleomorphs and anamorphs of Pleurotus cystidiosus and Pleurotus smithii. Mycological Research 95(11): 1264-1269. DOI: https://doi.org/10.1016/S0953-7562(09)80572-8 [ Links ]

Guzmán, G., L. Montoya, D. Salmones and V. M. Bandala. 1993. Studies of the genus Pleurotus (Basidiomycotina) II. Pleurotus djamor in Mexico and in other Latin-American countries, taxonomic confusions, distribution and semi-industrial culture. Cryptogamic Botany 3(2-3): 213-220. [ Links ]

Hilber, O. 1982. Die Gattung Pleurotus (Fr.) Kummer. J. Cramer. Vaduz, Liechsteintein. 448 pp. [ Links ]

Hoa, H. T. and C. L. Wang. 2015. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(1): 14-23. DOI: https://doi.org/10.5941/MYCO.2015.43.1.14 [ Links ]

Hoa, H. T., C. L. Wang and C. H. Wang. 2015. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(4): 423-434. DOI: https://doi.org/10.5941/MYCO.2015.43.4.423 [ Links ]

Hoa, H. T., C. H. Wang, N. V. Tam and C. L. Wang. 2017. Effects of substrates and drying methods on antioxidant compound and antioxidant activity of fruiting body extracts of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). International Food Research Journal 24(5): 1998-2008. [ Links ]

Horisawa, S., Y. Sakuma and S. Doi. 2013. Identification and species-typing of wood rotting fungi using melting curve analysis. Journal of Wood Science 59: 432-441. DOI: https://doi.org/10.1007/s10086-013-1349-z [ Links ]

Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754-755. DOI: https://doi.org/10.1093/bioinformatics/17.8.754 [ Links ]

Huerta, G., D. Martínez-Carrera, J. E. Sánchez, H. Leal-Lara and R. Vilgalys. 2010. Genetic relationships between Mexican species of Pleurotus analyzing the ITS-region from rDNA. Micología Aplicada International 22(1): 15-25. [ Links ]

Hussain, S., N. S. Afshan, H. Ahmad and A. N. Khalid. 2015. New report of the edible mushroom Pleurotus cystidiosus from Pakistan. Österreichische Zeitschrift für Pilzkunde-Austrian Journal of Mycology 24: 23-30. [ Links ]

Index Fungorum. 2023. Index Fungorum, database. http://www.indexfungorum.org/names/names.asp (consulted November, 2023). [ Links ]

Jong, S. C. and J. T. Peng. 1975. Identity and Cultivation of a New Commercial Mushroom. Mycologia 67(6): 1235-1238. DOI: https://doi.org/10.1080/00275514.1975.12019874 [ Links ]

Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780. DOI: https://doi.org/10.1093/molbev/mst010 [ Links ]

Katoh, K., K. Misawa, K. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059-3066. DOI: https://doi.org/10.1093/nar/gkf436 [ Links ]

Katoh, K., J. Rozewicki and K. D. Yamada. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. DOI: https://doi.org/10.1093/bib/bbx108 [ Links ]

Lechner, B. E., J. E. Wright and E. Albertó. 2004. The genus Pleurotus in Argentina. Mycologia 96(4): 845-858. DOI: https://doi.org/10.2307/3762117 [ Links ]

Lin, P., Z. F. Yan, M. Kook, C. Li and T. H. Yi. 2022. Genetic and chemical diversity of edible mushroom Pleurotus species. BioMed Research International 2022: 6068185. DOI: https://doi.org/10.1155/2022/6068185 [ Links ]

Liu, X. B., J. W. Liu and Z. L. Yang. 2015. A new edible mushroom resource, Pleurotus abieticola, in southwestern China. Mycosystema 34(4): 581-588. DOI: https://doi.org/10.13346/j.mycosystema.150051 [ Links ]

Maddison, W. P. and D. R. Maddison. 2023. Mesquite: a modular system for evolutionary analysis, ver. 3.81 http://www.mesquiteproject.org (consulted March, 2020). [ Links ]

Miller, O. K. 1969. A new species of Pleurotus with a coremioid imperfect stage. Mycologia 61(5): 887-893. DOI: https://doi.org/10.1080/00275514.1969.12018812 [ Links ]

Moreno, G. 1975. Revisión del género Lentinus Fr. en España. Anales del Instituto Botánico A. J. Cavanilles 2(2): 75-84. [ Links ]

Moreno, G., F. Esteve-Raventós and N. Ayala. 1993. A new species of Pleurotus from the San Felipe Desert (Baja California, Mexico). Mycotaxon 48: 451-457. [ Links ]

Moreno-Fuentes, Á., E. Aguirre-Acosta, M. Villegas and J. Cifuentes. 1994. Estudio fungístico de los macromicetos en el municipio de Bocoyna, Chihuahua, México. Revista Mexicana Micología 10: 63-76. DOI: https://doi.org/10.33885/sf.1994.3.813 [ Links ]

Moreno-Fuentes, Á., E. Aguirre-Acosta and L. Pérez-Ramírez. 2004. Conocimiento tradicional y científico de los hongos en el estado de Chihuahua, México. Etnobiología 4(1): 89-105. [ Links ]

Raman, J., K. Y. Jang, Y. L. Oh, M. Oh, J. H. Im, H. Lakshmanan and V. Sabaratnam. 2021. Cultivation and nutritional value of prominent Pleurotus spp.: an overview. Mycobiology 49(1): 1-14. DOI: https://doi.org/10.1080/12298093.2020.1835142 [ Links ]

Rambaut, A. 2018. FigTree ver. 1.4.4. https://github.com/rambaut/figtree (consulted February, 2024). [ Links ]

Schoch, C. L., K. A. Seifert, S. Huhndorf, V. Robert, J. L. Spouge, C. A. Levesque, W. Chen and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109(16): 6241-6246. DOI: https://doi.org/10.1073/pnas.1117018109 [ Links ]

Segedin, B. P., P. K. Buchanan and J. P. Wilkie. 1995. Studies in the Agaricales of New Zealand: New species, new records and renamed species of Pleurotus (Pleurotaceae). Australian Systematic Botany 8(3): 453-482. DOI: https://doi.org/10.1071/SB9950453 [ Links ]

Shnyreva, A. A. and A. V. Shnyreva. 2015. Phylogenetic analysis of Pleurotus species. Russian Journal of Genetics 51: 148-157. DOI: https://doi.org/10.1134/S1022795415020131 [ Links ]

Sobal, M., D. Martínez-Carrera, P. Morales and S. Roussos. 2007. Classical characterization of mushroom genetic resources from temperate and tropical regions of Mexico. Micología Aplicada International 19(1): 15-23. [ Links ]

Stajić, M., S. P. Wasser, S. V. Reshetnikov, E. Nevo and G. Guzmán. 2003. First record of the natural occurrence of Pleurotus cystidiosus and P. smithii in Israel and Asia. Israel Journal of Plant Sciences 51(3): 237-244. [ Links ]

Stalpers, J. A., K. A. Seifert and R. A. Samson. 1991. A revision of the genera Antromycopsis, Sclerostilbum and Tilachlidiopsis (Hyphomycetes). Canadian Journal of Botany 69(1): 6-15. DOI: https://doi.org/10.1139/b91-002 [ Links ]

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313. DOI: https://doi.org/10.1093/bioinformatics/btu033 [ Links ]

Thiers, B. 2024. Continuously Updated. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. https://sweetgum.nybg.org/science/ih/ (consulted January, 2024). [ Links ]

Torta, L., P. Bella, G. Conigliaro, G. Mirabile, V. A. Laudicina, S. Giambra, G. Venturella and M. L. Gargano. 2019. First report of Pleurotus fuscosquamulosus (Pleurotaceae, Basidiomycota) in Italy naturally occurring on new tropical hosts. Flora Mediterranea 29: 197-206. [ Links ]

Valenzuela, R., G. Guzmán and J. Castillo. 1981. Descripción de especies de macromicetos poco conocidas en México, con discusiones sobre su ecología y distribución. Boletín de la Sociedad Mexicana de Micología 15: 67-120. DOI: https://doi.org/10.33885/sf.1981.2.533 [ Links ]

Yang, Z. H., J. X. Huang and Y. J. Yao. 2007. Autoscreening of restriction endonucleases for PCR-restriction fragment length polymorphism identification of fungal species, with Pleurotus spp. as an example. Applied and Environmental microbiology 73(24): 7947-7958. DOI: https://doi.org/10.1128/AEM.00842-07 [ Links ]

Zervakis, G., D. Dimou and C. Balis. 1992. First record of the natural occurrence in Europe of the basidiomycete Pleurotus cystidiosus on a new host. Mycological Research 96(10): 874-876. DOI: https://doi.org/10.1016/S0953-7562(09)81034-4 [ Links ]

Zervakis, G., J. M. Moncalvo and R. Vilgalys. 2004. Molecular phylogeny, biogeography and speciation of the mushroom species Pleurotus cystidiosus and allied taxa. Microbiology 150(3): 715-726. DOI: https://doi.org/10.1099/mic.0.26673-0 [ Links ]

Zervakis, G. I., G. Venturella, V. Fryssouli, P. Inglese, E. Polemis and Gargano, M. L. 2019. Pleurotus opuntiae revisited - An insight to the phylogeny of dimitic Pleurotus species with emphasis on the P. djamor complex. Fungal Biology 123(3): 188-199. DOI: https://doi.org/10.1016/j.funbio.2018.12.005 [ Links ]

Author contributions

DLP and MLE collected and morphologically characterized the specimens. EHN performed all molecular procedures and analyses. All authors conceived and designed the study; contributed to the discussion, review, and approval of the final manuscript.

Founding

This research was funded by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)-Universidad Nacional Autónoma de México (UNAM), Project IA205323.

Received: February 13, 2024; Revised: May 07, 2024; Accepted: June 07, 2024; Published: July 02, 2024

3Autor para la correspondencia: eduardo.hernandez@ib.unam.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License