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Abstract

Using integrative epidemiologic techniques, we studied the changing rela-
tionships (beta and phylogenetic beta diversity) of multihost systems and vi-
rus associations in bat communities in fragmented landscapes from Chiapas,
Campeche and Greater Mexico City. We combined computing applications, mo-
lecular detection, and nucleotide sequencing of coronaviruses, hantaviruses,
paramyxoviruses and pegiviruses with ecological and phylogenetic analyses.
A total of 22 viruses were discovered in 1,067 samples from 42 bat species,
representing an estimated 78% of all viral richness in the system. Based
on 17 virus genotypes discovered with an equal sampling effort, a total vi-
ral richness of 23 genotypes was estimated using a Chao2 statistic model.
Using a residual model, we categorized host species and habitat types that are
prone to harboring higher viral richness. Positive relationships were found be-
tween phylogenetic host diversity and both viral diversity (r=0.41, p <0.05)
and viral richness (r=0.51, p <0.05). The beta diversity (the rate of change)
of viral communities was explained by host beta diversity (r=0.86, p <0.05).
To understand the change in viral and host communities, we partitioned beta
diversity in nestedness (species loss) and turnover (compositional dissimi-
larity) components. In Chiapas, the host beta diversity was explained by the
nestedness of species composition, while the phylogenetic host diversity
was explained by turnover of the host lineages. Campeche showed a high
phylogenetic host nestedness and low host turnover. Beta-diversity and be-
ta-phylogenetic diversity indicated that patterns of local species assemblages
and regional abiotic features in human-dominated landscapes are significant
drivers of viral community composition. Our study represents the first effort
in Mexico to study the relationship between viral diversity in bat communities
in modified landscapes to understand host-virus relationships.

Keywords: Disease Ecology; Chiroptera; Viral richness; Alpha diversity; Beta diversity;

Phylogenetic diversity; Habitat loss.
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Introduction

Land use change appears to be the primary mechanism driving zoonotic diseases
(Patz et al, 2004). The expansion of agricultural production and urbanization has
simultaneously modified ecosystem structure and function, community structure
(species assemblages), patterns of species distribution and biodiversity (Christian
et al., 2009; Gibbs et al, 2009). These modified systems have produced suit-
able environments for multi-species interactions, particularly hosts, vectors, and/
or pathogens (McMichael, 2004; Rivard et al., 2007; Jones et al., 2013; Rubio et
al, 2014).

Bats, on one hand, have been considered a likely source of highly pathogenic
RNA viruses including lyssaviruses (Banyard et al, 2011), Ebola virus (Leroy et
al, 2005), Marburg virus (Towner et al. 2009), Nipah virus (Epstein et al., 2006),
Hendra virus (Smith et al, 2011), and coronaviruses (CoV) (e.g., SARS-coronavi-
rus, MERS-coronavirus) (Hilgenfeld and Peiris, 2013). On the other hand, bats are
recognized as a key group in the maintenance of ecological systems by providing
ecological services such as pollination, seed dispersal and agricultural pest control
(Medellin, 2009; Kunz et al. 2011). Additionally, due to their response to habitat
loss and fragmentation, bats are excellent bioindicators of environmental changes
(Medellin et al., 2000).

To properly understand complex interactions in multihost systems, several eco-
logical and phylogenetic tools have been used. In disease ecology, diversity indices
have been used to correlate the number of species (richness) and the relative
abundance of species present in a given community (alpha diversity) (Suzén et
al, 2009) and in microbiome systems (Anthony et al.,, 2013a; Olson et al., 2014)
with disease prevalence. Diversity indices have also been used to evaluate changes
in host-parasite composition in host communities at the local, regional, and bio-
geographic scales (alpha, beta gamma diversity) (Svensson-Coelho and Ricklefs,
2011; Scordato and Kardish, 2014). From an evolutionary perspective, host and
pathogen phylogenetic relationships have been studied, and diversity indices have
been incorporated to measure changes in host species community assemblages
through environmental gradients (Webb et al,, 2002; Helmus et al., 2007). These
phylogenetic methods offer additional dimensions to explore host-parasite interac-
tions over time, such as host specificity, host-parasite co-evolution, host switching
events, and phylogenetic barriers preventing pathogen transmission (Legendre et
al, 2002; Streicker et al., 2010; Poulin et al, 2011). The study of ecological and
phylogenetic interactions between host-pathogen systems integrates the role of en-
vironmental influences on host and pathogen distributions across time and spatial
scales and across different levels of biological organization beyond taxonomic levels
(Hawley and Altizer, 2011)

In this study, we examined the relationship between host diversity and the di-
versity of four viral taxa in bats from human-dominated landscapes in Mexico. Two
hypotheses were tested related to the effect of host species and host phylogenetic
diversities on viral diversity and the influence of habitat type on the composition of
host and viral communities. First, we hypothesized that (1) host communities with
high species and phylogenetic diversities will support high values of viral diversity;
(2) changes in host and viral community composition across a habitat type will be
reflected in high values of beta diversity and phylogenetic-beta diversity.
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Materials and Methods

Sample collection

Bats were captured at three different sites in Mexico: the Reserva de la Bidsfera
Montes Azules (RBMA) in Chiapas, the Reserva de la Biosfera Calakmul (RBC)
in Campeche, and Greater Mexico City (GMC) including the Distrito Federal and
Metropolitan Area. The first two sites, located in southeastern Mexico, represent
regions of high species diversity and are characterized by large tracts of continuous
primary vegetation, while the GMC site is highly urbanized with vegetation patches.
A high evergreen forest characterizes RBMA, while RBC is dominated by tropical
semi-deciduous forest; both regions have high anthropogenic pressure. In RBMA and
RBC, bats were collected from three different habitat types: Forested” (Fd), where
signs of human impact are largely absent and the original vegetation persists; Frag-
mented’ (F), where areas of primary vegetation are interspersed with agricultural/
rangeland; and Disturbed” (D), the transition zone between areas of secondary
vegetation and agricultural/rangeland or urban areas. In the GMC sites, bats were
captured in ‘Urban’ (U), human-dominated areas and ‘Fragmented” habitats. We
used 5 mist-nets (each 9 x 3 m wide) that were opened at dusk and remained
open for four consecutive hours. Each habitat was sampled once in six months.
Bats were identified using a field guide (Medellin et al, 2008). The minimal dis-
tance in RBMA was 2 km, while in RBC it was 10 km. A mantel test was performed
to ensure site independence due to the geographic distance (RBMA; r = 0.55,
p =0.01; RBC r = 0.57 p = 0.006). Oral and rectal swabs and, when possible,
blood samples were collected from each animal. Samples were collected in lysis
buffer and preserved at -80°C until transfer to the Center for Infection and Immu-
nity, Columbia University, New York for viral screening.

Virus discovery

A total of 1,067 samples from 608 individuals representing 42 bat species were
tested for the five viral families/genera (Table S1). Total nucleic acid was extracted
from all samples using the EasyMag® (bioMérieux, Inc Darham, NC, USA.) platform,
and cDNA synthesis performed using SuperScript® |lI first strand synthesis super-
mix (Invitrogen), all according to the manufacturer's instructions. Viral discovery
was performed using broadly reactive consensus PCR primers, targeting the L-Seg-
ment for hantavirus (HTV) detection (Klempa et al, 2006) and the polymerase
(pol) gene for paramyxovirus (PMV) detection (Tong et al,, 2008). PCR products
of the expected size were cloned into the StrataClone™ PCR cloning vector and
sequenced using standard M13R primers. CoV, hepacivirus (HPV) and pegivirus
(PGV) detections have been previously reported, and these viral sequences were
detected in the same 1,067 samples (Anthony et al., 2013b; Quan et al,, 2013).

Estimates and Completeness of Viral Richness

We evaluated our sampling effort (the number of samples tested for a given virus),
using two methods: by producing rarefaction and extrapolation curves and by cal-
culating the values of the residuals of the linear regression between viral richness
within a host and sampling effort by host. Rarefaction and extrapolation curves are
statistical techniques to estimate the number of species for a given number of
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samples (Magurran, 2004; Chao and Jost, 2012), allowing the evaluation of the
sampling effort and estimation of the number of host samples required to obtain
a viral richness value with 95% confidence (Chao et al., 2014). We evaluated the
viral richness, defined as unique viruses discovered in the 1,067 samples, by con-
structing sample size-based rarefaction and extrapolation curves using a three-fold
original sample effort (3,201 samples) (Chao et al., 2014) with the R iNEXT library
(Hsieh et al, 2013). The same methodology was used to explore viral complete-
ness by habitat type. For this purpose, we only considered samples with the same
number of PCR screenings (CoVs, PMVs and HTVs). To identify host species asso-
ciated with higher viral richness, we used a methodology proposed by Herbreteau,
2012. We calculated residual values from the linear regression of the logarithm of
viral richness and the logarithm of sampling effort for each species and at each
disturbance level. These data were logarithmically transformed to stabilize the
variance. Host species or disturbance levels with positive or negative residual values
were identified as host species with more or less viral richness than expected by the
regression model (Herbreteau et al, 2012).

Host and Viral Diversity

To study regional host and viral alpha diversities, abundance matrixes (host and
virus) were constructed, where the rows were disturbance level and the columns
were (i) host species and (ii) viruses discovered in each disturbance level. Using
the R vegan library (Oksanen et al, 2013), a Shannon-Wiener diversity index (Shan-
non, 1948) was calculated for each matrix. Values ranged from O, when there is
only one species present, to 1, when all species are equally represented in the
sample (Magurran, 2004).

Phylogenetic Diversity and Host Specificity

The mammalian super tree (Bininda-Emonds et al., 2007) was used to calculate
the phylogenetic diversity (PD) of host communities using the R Picante library
(Kembel et al, 2010). The PD was measured by calculating the sum of the total
branch length of the host species phylogeny sampled in each habitat type (Faith,
1992). Because the data on host taxonomic diversity were not normally distributed,
only phylogenetic analyses were performed. The relationships of viral richness and
viral diversity with host PD was explored using a linear model. To quantify host-viral
taxonomic associations, we used a modified index of host specificity proposed by
Poulin and Mouillot, 2003, that measures the PD of host communities associated
with each virus. Viruses with high values of host specificity exhibit plasticity to infect
a wide range of hosts, while viruses with lower values are restricted to a few closely
related host species (Poulin and Mouillot, 2003; Poulin et al., 2011).

Beta Diversity and Phylogenetic Beta Diversity

A Pearson correlation test was performed to explore the relationship between host
BD and PBD with changing compositions of viral communities by habitat type cal-
culated by the Sorensen index. To evaluate the change in composition of viral and
host communities (BD) within regions, we used measures of beta-diversity: spa-
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tial turnover (Bgy,) and nestedness (Bgyr) components (Baselga, 2010). Spatial
turnover (53g;,,) measures the replacement of species by other species due to en-
vironmental factors or spatial isolation, such as by habitat fragmentation (Calderon-
Patrén et al, 2012). The nestedness component (Bsyz) measures whether sites
with smaller number of species are subsets of richer sites (Ulrich et al., 2009).
These components were calculated for taxonomic and phylogenetic beta-diversity
analyses. Phylogenetic beta-diversity (PBD) measures how phylogenetic related-
ness changes across space in the same manner that BD measures how species
composition changes across space (Graham and Fine, 2008). The PBD between
disturbance levels was obtained using the inverse of the PhyloSor index (Bryant
et al, 2008). This index represents shared branches between communities from
two sites. Values range from O when no species are shared to 1 when all species
in the two locations are the same. The methodology of Leprieur (2012) was used
to calculate the phylogenetic turnover (PBg;,,) and to measure the phylogenetic
dissimilarity, nested patterns of species assemblages (PBsy). The functions beta.
multi for BD and phylo.beta.multi for PBD from the R betapart library were also
applied to calculate the influence of each component on host and viral community
composition by habitat type in each region (Baselga and Orme, 2013).

Results

Viral Community Data

Atotal of 4,139 consensus PCR assays were performed for viral detection, including
CoVs (n = 1,067), PMVs (n = 1,067), HTVs (n = 1,067), PGVs (n = 469) and
HPVs (n = 469). A viral richness (S) of 22 virus genotypes in 46 positive samples
from a total of 1,067 samples, 13 for CoVs, 2 for PMVs, 2 for HTVs, and 5 for PGVs,
was obtained (Table S2). No HPVs and no co-infections were detected. This viral
richness is associated with 17 bat species from 12 genera and 4 families (Fig. 1A).
In forested habitats, a total of 11 viruses were detected, followed by fragmented
habitats (10), disturbed habitats (8) and urban habitats (3) (Fig.1B). The bat spe-
cies harboring viral richness greater than one were all phyllostomid bats: Carollia
sowelli (S = 5), Artibeus lituratus (S = 4), Artibeus jamaicensis (S = 3), Artibeus
phaeotis (S = 3) and Trachops cirrhosus (S = 2) (Fig. S1).

Estimates and Completeness of Viral Richness

Based on the 17 virus genotypes discovered, we estimated a maximum richness
of 23 genotypes using a Chao2 statistic model (Chao and Jost, 2012). The sam-
pling effort of 1,067 samples represents a completeness of 81% in relation to the
estimated viral richness. The rarefaction sample coverage function estimates 97%
completeness with a sample size of 3,201 (three-fold sample size) (Fig. 2). The
comparison between habitats showed the highest value of completeness (53%) in
forested habitat, followed by disturbed (43%) and fragmented (15%) habitats. The
estimates of viral richness with a three-fold original sample effort by habitat were
24 from fragmented habitats, 19 from forested habitats and 10 from disturbed
habitats (Table ).
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Figure 1. Bipartite graph of 22 virus genotypes discovered in 17 bat species. A. Viral richness associated with bats.
The width of the green boxes represents viral and positive hosts abundances. B. Viral richness associated with

habitat type.

Positive relationships were observed between sampling effort and host viral
richness (R2 = 0.44, p < 0.01) and between sampling effort and habitat type viral
richness (R2 = 0.37 p < 0.05). Sturnira lilium, Pteronotus parnelli and Artibeus
jamaicensis were associated with greater viral richness than expected by the linear
model between host viral richness and sampling effort, whereas Trachops cirrho-
sus, Lonchorhina aurita and Eptesicus fuscus (Fig. 3.A), were identified as host
species associated with lower viral richness than expected. The RBMA fragmented
habitat type harbored the highest number of viruses compared to the expected
value, while the RBC fragmented habitat type was identified as the site with the
smallest viral richness compared to the value expected by the model (Fig. 3.B).

Host and Viral Diversity

RBMA was the region with the most virus genotypes discovered (12), followed
by RBC (11) and GMC (3) (Fig. 4). As we expected, RBMA was the most diverse
region in terms of host species and host phylogeny, with Fd being the most diverse
area in both diversity scales (H = 2.79, PD = 484.8). Interestingly, D presented
high values of both species and phylogenetic diversities compared to F (Table 2). A
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Figure 2. Rarefaction and extrapolation sampling curve based on 1,067 samples. Orange line
represents accumulation curve of virus genotypes over samples tested. Green point, viral richness
=22 in 1,067 samples analyzed for virus tested. Solid green line: rarefaction curve, green dashed
line: extrapolation-sampling curve. The numbers of samples needed to obtain the completeness
percentages of 85, 90, 95 and 97% are presented.

difference in host species diversity (F = 13.63, df = 2, p < 0.01) and host phylo-
genetic diversity was observed (F = 16.71, df =2, p < 0.01) at the regional scale,
in contrast to viral diversity comparison (F = 3.73, df = 2, p > 0.05). A significant
relationship of both viral richness and viral diversity with host phylogenetic diversity
was observed. A total of 41% (p < 0.05) and 51% (p < 0.05) of viral richness and
viral diversity variance was explained by phylogenetic diversity, respectively. This
result suggests that host community composition at each habitat type determines
both viral richness and viral diversity.

Phylogenetic Host Specificity

Of 22 viruses discovered, only six were associated with more than two host species,
and 16 viruses were detected in one host species (Table S3). The flavivirus PgV was
the virus with the lowest value of phylogenetic host specificity (114.5) and was de-
tected in three species from three different Phyllostomidae subfamilies; Stenoder-
matinae and Phyllostominae, both from forested sites, and Glossophaginae, from
disturbed habitats. Hanta 2 (87.8) was detected in two bat species from different
habitats; Carollia sowelli (disturbed) and Trachops cirrhosus (forested), while the
CoV MexCoV 5b was found in three bat species, two of which belong to the same
genus; Artibeus jamaicensis, A. lituratus (forested) and C. sowelli (fragmented).
MexCoV 11a (68.3), MexCoV 11b (68.3) and MexCoV 1 (65.6) were detected in
two bat species from the same genus (Figure 1A).
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Table 1. Estimates of viral richness and sample completeness by habitat type.

m Sample Size m Sampled Completeness

Total 1067 17 81%

1677 18 95%

3201 23 97%

Forested 405 9 53%

1215 19 76%

3201 27 95%

Fragmented 217 10 15%

651 24 400%

3201 48 94%

Disturbed 395 5 43%

1185 10 97%

3201 11 99%

Urban 49 2 100%
Beta Diversity

We found that 86% (p < 0.05) of the beta diversity of viral communities was
explained by the turnover of host species between habitats. The same trend was
observed with host PBD and virus beta diversity but was not statistically signifi-
cant (r = 0.79, p > 0.05). For RBMA, the community dissimilarity in host species
composition through the habitat gradient was relatively high (85,0 = 0.49) and is
explained by the nestedness component (8gyz= 0.57), as most of the bat species
sampled in low-richness sites are also contained in the richest site (Fd= 26 spe-
cies). PBD showed different behavior; although the value of overall PBD is similar
(PBsop = 0.42), the phylogenetic composition change was partially explained by
the turnover component (P8, = 0.25) due to the low phylogenetic relationship
contained in the species subset replaced by nestedness. The overall beta diversity
in RBC was relatively low (850 = 0.37), suggesting that the habitat type has a low
influence on the species assemblage. The observed pattern in RBC was different
from RBMA, while species composition dissimilarity was moderately driven by spe-
cies replacement (P35, = 0.22). In contrast to RBMA, the PBD analysis indicated a
replacement dominated by highly phylogenetically related species (PBgpz= 0.79).
The interpretation of the pattern observed in GMC is limited, as only two commu-
nities were sampled and the nestedness component is impossible to calculate. In
RBMA and RBC, we observed high overall values of beta diversity in viral communi-
ties (Table S3), and both were explained by the turnover component (535;,,=0.66),
suggesting that changes in habitat quality drive a high replacement of virus species
regardless of host composition.

Discussion
In this study, we evaluated the relationship between bat diversity and the diver-
sity of 4 medically important viral families within an environmental gradient in
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Figure 3. Distribution of residual values from the linear relations (A) between host viral richness and sampling effort
and (B) between habitat type viral richness and sampling effort. Host species and habitat type were reordered by
residuals of the sampling effort regression.


http://www.revistas.unam.mx/index.php/Veterinaria-Mexico

Oa
http://www.revistas.unam.mx/index.php/Veterinaria-Mexico Viruses and bats in anthropogenically disturbed landscapes Original Research W ]0/ 2

Vol. 21 No.11January-March 12015

=
~
N \L\{j
~
o
~
@ |
o . Pegivirus
. Paramyxovirus
Hantavirus

<
T |

-105 -100 -95 -90

Figure 4. Viral richness in the three regions of study: (A) Greater Mexico City, (B) Montes Azules and (C) Calakmul. Number of
virus genotypes discovered per region is shown.

human-dominated landscapes in southern Mexico. Combining computing appli-
cations and leading-edge molecular techniques for viral identification with ecolog-
ical and phylogenetic analyses, we measured the viral community turnover in bat
communities. A strong relationship of viral richness and viral diversity with host
phylogenetic diversity was detected. Generalist species were associated with more
viruses than expected, and a positive relationship of the beta diversity of both viral
and bat communities with the habitat gradient were detected.

As hypothesized, significant positive correlation of phylogenetic diversity with
viral richness and viral diversity was detected, supporting both the habitat hetero-
geneity hypothesis (Lawton, 1983), which proposes a strong relationship between
environmental diversity (in this case the phylogenetic host diversity) and biological
diversity (viral diversity), and the keystone structure hypothesis (Tews, 2004), which
refers to “keystone structures” as host species that provide distinct resources,
which may be linked to different viral species. Considering bat hosts as habitats, the
keystone structures can be categorized in characteristics that relate to reproduction
and abundance (reproductive potential, longevity, trophic guild, abundance and
adult mass), transmission potential (home range, diet breath and roost size) and
phylogenetic relationships (phylogenetic distance and phylogenetic distinctiveness).
Our findings suggest that factors such as fragmentation and habitat loss drive spe-
cies assemblages, resulting in areas of greater risk for zoonotic disease emergence,
as proposed by (Gay et al, 2014; Kamiya et al., 2014; Rubio et al, 2014). Future
studies are required to identify which host traits determine the viral community as-
semblages, but evidently greater viral diversity does not imply greater health risks;
in fact, the correlation between viral and host diversity suggests that only under
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Table 2. Host and viral diversities per habitat type for the 3 regions. Richness
(S), Shannon — Weiner diversity index (H), phylogenetic diversity (PD).

Region | Habitat | s | v | po | s | |

Montes Azules Forested 26 2.79 484.8 8 2.043
Fragmented 14 2207 3328 2 0.693
Disturbed 20 2622 4182 5 1.56
Calakmul Forested 12 1.906  260.1 4 1.906
Fragmented 8 1.853  208.8 7 1.853
Disturbed 13 1.986 289.1 4 1.986

Greater Mexico City ~ Fragmented 1 0 60 1 0
Urban 4 1.155 137.6 3 1.079

disturbed, deforested conditions can a pathogen have greater chances of becoming
a health risk.

The phylogenetic host specificity calculated in this study not only reflects the
number of bat species infected by a single virus but also helps to explore the phylo-
genetic relationships among these species. Our findings show that few viral species
possess high host plasticity, such as PgV and HTV 2, while most viruses detected
showed high phylogenetic specificity. Due to the quality of our data, we cannot
conclude that viruses found in only one bat species are strictly exclusive to them,
and further studies are needed. However, the coronavirus family showed high host
phylogenetic specificity at the genus level, as shown in Anthony et al, 2013b).

Changes in viral community composition through the evaluated anthropogenic
landscapes showed a strong dependence on host species turnover; however, this
relationship was not statistically significant when host PBD was considered. In
general, different patterns between regions and between diversity levels were re-
ported. For instance, RBMA is characterized by a nestedness process in host com-
munity composition, and changes reflect of a high PD host pool, while in RBC, the
beta diversity values were relatively low due to low PD host diversity, and the PBD
was explained by the nestedness component. As hypothesized, we found high
values of beta diversity in viral communities, supporting the hypothesis of pertur-
bation, where land use change modifies parasite dynamics in multihost systems
by cross-species shifting in parasite transmission (Murray and Daszak, 2013). It
has been widely proposed that habitat transformation drives the exposure of novel
hosts to a rich pool of parasites, especially in high-diversity regions, influencing the
cross-species transmission rate (Lloyd-Smith et al, 2009; Brearley et al, 2013;
Murray and Daszak, 2013).

The use of beta analyses at both the taxonomic and phylogenetic scales has
provided a useful tool to understand whether host species or environmental filters
can determine parasite composition (Svensson-Coelho and Ricklefs, 2011; Scorda-
to and Kardish, 2014). We could not demonstrate that host phylogeny determines
the composition of viral communities due to spatial scale limitations in our study.
Further studies are necessary to test the correlation between host phylogeographi-
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cal structure and the beta diversity of viral communities within larger spatial scales
or in communities separated by geographic barriers (vicariance processes).

Conclusions

Our study showed that habitat quality and abiotic characteristics are important fac-
tors driving changes in viral diversity in human-dominated landscapes. This viral rich-
ness and viral diversity are both explained by host phylogenetic diversity. The host
turnover component represents an unexplored dimension with a high potential for
estimating viral diversity, especially in transformed landscapes. We integrated viral
and host diversity analyses within an environmental gradient in human-dominated
landscapes in vertebrates. This effort represents the first study in Mexico measuring
viral community turnover in bats to monitor potential viral richness in wildlife and
its associations with biodiversity, a necessary subject to understand how changes in
ecosystem function and anthropogenic changes can promote disease emergence.
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Table S1. Number of samples and bats per disturbance level by region.

Region Dlstlzl",t;elmce No. of Samples | Bats captured
Montes Azules Forested 253 127
Fragmented 142 79
Disturbed 293 134
Calakmul Forested 152 129
Fragmented 65 38
Disturbed 102 71
Greater Mexico City Fragmented 10 5
Urban 49 25

Total 1067 608
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Table S2.Virus discovered in bat species from three regions.
Virus, name of unique virus, V, number of virus per bat species.

IS N T O N

Montes Azules Forested Oral Carollia sowelli Mex Cov 2
Forested Oral Artibeus phaeotis Mex Cov 11a 1
Forested Oral Artibeus phaeotis Mex Cov 11b 1
Forested Oral Trachops cirrhosus HANTA 2 1
Forested Rectal Lonchorhina aurita Mex CoV 3 1
Forested Rectal Artibeus jamaicencis Mex CoV 5a 1
Forested Blood Trachops cirrhosus PgV 1 1
Forested Blood Sturnira ludovici PgV 1 1
Forested Blood Artibeus toltecus PgV.G1 1
Fragmented Rectal Artibeus jamaicensis Mex CoV 5a 1
Fragmented Blood Eptesicus fuscus Mex CoV 6 1
Disturbed Oral Carollia sowelli Mex CoV 1 1
Disturbed Oral Carollia sowelli HANTA 2 1
Disturbed Rectal Carollia sowelli Mex CoV 1 1
Disturbed Blood Choeroniscus godmani PgV 1
Disturbed Blood Glosssophaga commissarisi PgV.G2 1
Disturbed Blood Carollia perspicillata PgV.H3 1
Calakmul Forested Rectal Artibeus jamaicensis Mex CoV 5b 2
Forested Rectal Artibeus lituratus Mex CoV 5b 3
Forested Rectal Artibeus lituratus Mex CoV 11b 1
Forested Rectal Artibeus phaetois Mex CoV 11b 1
Forested Rectal Artibeus phaetois PMV 2 1
Forested Rectal Pteronotus parnellii Mex CoV 10 1
Fragmented Rectal Carollia perspicillata Mex CoV 1 1
Fragmented Rectal Carollia sowelli Mex CoV 1 1
Fragmented Rectal Carollia sowelli Mex CoV 2 1
Fragmented Rectal Carollia sowelli Mex CoV 5b 1
Fragmented Rectal Carollia sowelli HANTA 1 1
Fragmented Rectal Artibeus jamaicensis Mex CoV 4 1
Fragmented Rectal Artibeus lituratus PMV 1 1
Fragmented Rectal Nyctinomops laticaudatus Mex CoV 9 1
Disturbed Rectal Carollia perspicillata Mex CoV 1 1
Disturbed Rectal Carollia sowelli Mex CoV 2 1
Disturbed Rectal Artibeus lituratus Mex CoV 11a 1
Disturbed Blood Carollia sowelli HANTA 1 1
Creater Mexico City Fragmented Rectal Myotis velifer Mex CoV 7 1
Urban Rectal Myotis veliter Mex Cov 7 2
Urban Rectal Tadarida brasiliensis Mex CoV 8 3
Urban Rectal Nyctinomops macrotis PgV.K1 1

Urban Blood Nyctinomops macrotis PgV.K1 1
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Table S3. Host specificity index (HSI) for each virus measured as the phylogeneitc diversity
of host community associated to each virus. (S) = Host richness.

I T

PgV 114.5 3
HANTA2 87.8 2
MexCoV5b 85.8 3
MexCoV11a 68.3 2
MexCoV11b 68.3 2
MexCoV'1 65.6 2
MexCoV2 60 1
MexCoV3 60 1
MexCoV4 60 1
MexCoV5a 60 1
MexCoV6 60 1
MexCoV7 60 1
MexCoV8 60 1
MexCoV9 60 1
MexCoV 10 60 1
PgV.G1 60 1
PgV.G2 60 1
PgV.H3 60 1
PgV.K1 60 1
HANTA1 60 1
PARA1 60 1
PARA2 60 1

Table S4. Multiple site dissimilarities accounting for the spatial turnover and the nestedness components
of beta diversity and phylogenetic beta diversity. _BSNE, nestedness component, 85, turnover_component, Bsor:
value of overall beta dlver5|_ty. _PB_SNE, phylogenetic ngstedness component, PBS_,M, phylogenetlc turnover, Pgop,
dissimilarity value accounting for phylogenetic beta diversity.

e [ e [ o [ [
Total 0.08 0.70 0.79 0.06 0.65 0.72 0.08 0.70 0.78
Montes Azules 0.57 0.33 0.49 0.17 0.25 0.42 0.13 0.66 0.80
Calakmul 0.14 0.22 0.37 0.79 0.36 0.44 0.06 0.66 0.73

Creater Mexico City ~ 0.60 0 060 045 0 045  0.50 0 0.50
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Figure S1. Host phylogeny and viral richness.
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