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SUMMARY

Soil respiration (R is a CO, efflux from
the soil to the atmosphere defined as the sum of
autotrophic (respiration by roots and mycorrhizae),
and heterotrophic (respiration of microorganisms that
decompose fractions of organic matter and of soil
fauna) respiration. Globally, R is considered to be
the second largest flux of C to the atmosphere. From
published literature it is clear that its main controls
are soil temperature, soil moisture, photosynthesis,
organic matter inputs and soil biota composition.
Despite its relevance in C cycle science, there have
been only twenty eight studies in Mexico in the last
decade where direct measurement of gas exchange was
conducted in the field. These studies were held mostly
in agricultural and forest ecosystems, in Central and
Southern Mexico where mild subtropical conditions
prevail. However, arid, semi-arid, tropical and wetland
ecosystems may have an important role in Mexico’s
CO, emissions because of their extent and extensive
land use changes. From the twenty eight studies, only
two provided continuous measurements of R. with
high temporal resolution, highlighting the need for
long-term studies to evaluate the complex biophysical
controls of this flux and associated processes over
different ecological succession stages. We conclude
that Mexico represents an important opportunity to
understand its complex dynamics, in national and
global context, as ecosystems in the country cover a
wide range of climatic conditions. This is particularly
important because deforestation and degradation of
Mexican ecosystems is rapidly increasing along with
expected changes in climate.
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RESUMEN

La respiracion del suelo (R,) se define como la
suma de la respiracion autotrofa (raices y micorrizas)
y la respiracion heterdtrofa (la de los microorganismos
del suelo que descomponen materia organica y de la
fauna del suelo). A nivel global, a R se le considera el
segundo flujo de C mas importante hacia la atmosfera.
La literatura denota que sus principales controles son
la temperatura y humedad del suelo, la fotosintesis, la
disponibilidad de materia organica y la composicion
de la biota del suelo. A pesar de su relevancia en
la ciencia del ciclo del C, ha habido solamente 28
estudios publicados en revistas indizadas en México
en la ultima década, en los cuales se llevaron a cabo
mediciones directas de intercambio de gases en campo.
Estos estudios principalmente representan sistemas
agricolas y bosques en el centro y sur del pais. Los
ecosistemas aridos y semiaridos, tropicales y los
humedales requieren atencion debido a su cobertura
espacial, su variacion de temperatura y humedad, y
la amenaza de los cambios de uso de suelo. De los 28
trabajos en la literatura, solo en dos midieron Ry de
manera continua, remarcando la necesidad de llevar a
cabo estudios a largo plazo para evaluar los complejos
controles biofisicos y procesos asociados a este flujo
en distintas fases de sucesion ecologica. Concluimos
que México representa una oportunidad importante
para entender la compleja dinamica de R, relevante
en contextos nacionales e internacionales, debido a la
fuerte estacionalidad que gobierna en la mayoria de
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los ecosistemas mexicanos. Esto es particularmente
relevante ya que la deforestacion y la degradacion
en los ecosistemas mexicanos estan incrementando
rapidamente mientras que se avizoran cambios
importantes en la climatologia del pais.

Palabras clave: biogeociencias; ciclo de carbono;
Slujo de CO, del suelo, temperatura de suelo, humedad
de suelo.

INTRODUCTION

Soil respiration (R, also known as soil CO,
efflux) is the second largest carbon (C) flux between
terrestrial ecosystem and the atmosphere (Raich and
Schlesinger 1992; Bond-Lamberty and Thomson
2010). Globally, it exceeds the input of carbon dioxide
(CO,) by anthropogenic fossil fuels combustion to
the atmosphere by an order of magnitude (Reichstein
and Beer, 2008). Then, the importance of understand
the dynamics and controls of R is that it represents a
net loss of C from the soils (Lal, 2004), and even a
small change in this pool could represent a significant
feedback to the Earth system (Reichstein ef al., 2003).

There is a growing community across the globe
interested in measuring and understanding soil C
fluxes. Furthermore, there are growing databases for
ecosystem CO, fluxes (e.g., FLUXNET, AmeriFlux,
MexFlux) (Baldocchi et al, 2001; Vargas et al.,
2013) and R, (Bond-Lamberty and Thomson, 2014).
However, most of the studies had been carried out in
Europe and the United States (Bond-Lamberty and
Thomson, 2010) at latitudes above 30° N. Ecosystems
in those regions are characterized by temperate
climates, with mean annual temperatures between
5-17 °C and annual rainfall above 600 mm; in contrast,
arid, semiarid, tropical, and subtropical regions have
been poorly represented, denoting that more tropical
countries are underrepresented in continental-to-
global understanding of the C cycle (Vargas et al.,
2012).This bias has regional, continental, and global
implications, from scientific understanding to policy
making and management that could be reduced if more
spatially refined and equally distributed estimations
and measurements exists, to improve our knowledge of
the factors that govern R across time and space (King
etal., 2015).

Mexico has many contrasting ecosystems,
spanning from arid deserts to evergreen and tropical

forest. Besides, Mexico exhibits heterogeneous
landscapes due to land use change, mainly from
deforestation, and livestock grassing (Vargas et al.,
2012). Furthermore, Mexico is prone to natural
hidrometeorological disturbances, such as the North
American Monsson across the Pacific Ocean, and
tropical cyclones occurring in the Caribbean and
the Gulf of Mexico. Despite the great opportunity
describe natural phenomena in contrasting gradients
(e.g., altitudinal, disturbances) and the potential for
manipulative experiments, Mexican scientists have
barely studied the dynamics of Rg and other ecosystem
C fluxes (Escobar ef al., 2008).

The main objective of this paper is to highlight
the opportunities that scientists interested in Ry (e.g.,
biologists, ecologists, soil scientists, hydrologists,
modelers) have to advance on the knowledge of soil
C cycle science. We first review the global literature
of Ry in order to give a brief description of the main
mechanisms that controls R, as well as common
methodologies to measure it. Then, we make a synthesis
from Ry studies held in Mexico, to discuss the state of
the art in this topic in the country. For the latter, we
only focused on published literature where fluxes where
measured or sampled in the field, excluding studies
where soil samples were incubated in the laboratory.

MECHANISMS

Soil respiration (R) is a composite of two main
CO, sources (Ryan and Law, 2005): i) autotrophic
respiration, the respiration by roots and mycorrhizae,
and 1ii) heterotrophic respiration, the respiration
of microorganisms within the soil that decompose
fractions of organic matter plus the respiration of
soil fauna. In view of the latter, R, exhibits complex
dynamics across different spatio-temporal scales
(Vargas et al., 2010b). The main abiotic controls of
R, are soil temperature (Lloyd and Taylor, 1994;
Davidson and Janssens, 2006) and soil moisture
(Kim et al., 2012), while soil physical characteristics
(Pumpanen et al., 2003) and organic matter inputs
(Curiel Yuste et al., 2007) influence the composition of
soil biota (Nannipieri et al., 2003). Although R is the
main CO, efflux from the soil to the atmosphere, other
non-biological processes contributes to CO, emissions
(Rey, 2015). An example of the latter is the chemical
weathering of calcium carbonate (Ca CO,) (Serrano-
Ortiz et al., 2010; Hamerlynck et al., 2013) and pore
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degassing following major inputs of water (Liu et al.,
2002; Lee et al., 2004).

Biophysical Controls

At different spatial scales (e.g., plot to continental),
soil temperature and soil moisture have been considered
the main abiotic factors that account for the major
temporal variability of R; (Subke and Bahn, 2010).
Although the temperature dependence of R, has been
greatly studied, there is still an open discussion about
the temperature sensitivity of soil organic matter (SOM)
decomposition (Giardina and Ryan, 2000; Davidson
and Janssens, 2006; Conant et al, 2011), and the
dependence of R onsoil moisture is not well understood
(Moyano et al., 2012; Vicca et al., 2014). Furthermore,
studies in the last two decades have demonstrated that
photosynthesis plays also a key role regulating R
(Hogberg et al., 2001; Vargas et al., 2011). Thus, the
interactions among these factors across temporal scales
cause great uncertainties in estimations of Ry, and it
becomes difficult to extrapolate site measurements to
the estimation of C budgets at different spatial scales.

Temperature

In most of the global literature, the variation of R¢
has been treated as a function of soil temperature (Lloyd
and Taylor, 1994), the most widely used equations
being those of van’t Hoff and Arrhenius (Sierra et al.,
2011). The temperature dependence of R reflects the
effect of temperature on microbial metabolism which
is derived from enzymatic kinetics (Schipper et al.,
2014). This temperature dependence of R¢ had received
much attention in recent years due to contradictory
results (von Liitzow and Kogel-Knabner, 2009)
resulting from different methods, such as incubation
experiments, field measurements (Rinkes et al., 2013),
different substrate pools [e.g., high-quality-labile-
fresh or low-quality-recalcitrant-old (Van Hees ef al.,
2005)], different metabolic temperature sensitivities
of autotrophic or heterotrophic components (Boone
et al., 1998), or different indices or empirical relations
used to describe this relationship (Sierra, 2012).
An important factor is the heterogeneity of abiotic
and biotic factors within the soil profile (texture,
temperature, moisture, microorganism composition,
life strategies, acclimatization delays, root composition
and distribution).

In temperate ecosystems, the diurnal increase and
decrease of soil temperature is generally reflected
in R; (Xu and Qi, 2001; Subke et al., 2003). Some
researchers have observed diel hysteresis and two
arguments have been proposed to explain this
phenomenon: i) environmental variables such as
photosynthate production, litterfall, and soil organic
carbon (SOC) availability may oscillate out of phase
with soil temperature (Carbone et al., 2008; Vargas
and Allen, 2008a); ii) soil temperature is measured at a
fixed depth but CO, efflux represents a profile, leading
to differences in magnitude and phase (Lasslop et al.,
2012). Of course, CO, production has an intrinsic lag
with surface efflux, dependent on depth and diffusion
(Vargas et al., 2010a). The temperature response of
R, has concerned the scientific community because
climate change would lead to positive feedback of
CO, emission to the atmosphere (Fang and Moncrieff,
2001).

Moisture

Microbial decomposition as well as root respiration
may be limited by water availability. Global patterns
of precipitation are changing in terms of number of
events, event size, and the number of dry days between
events (Knapp et al., 2015). However, the response of
R, to precipitation events, or soil moisture, is relatively
unknown (Kim et al., 2012).

For these reason researches had proposed several
explanations and hypothesis of what could be
happening after rain events: i) a rapid degasification of
soil air-filled pore spaces (Yépez and Williams, 2009),
ii) a re-hydration of dormant fungi and microbes and an
increase of their biomass (Chowdhury et al., 2011), iii)
microbial cell lysis due to a osmotic shock (Van Gestel
etal.,1992),1v) release of microbial osmolytes that may
support broader increases in metabolism (metabolic
hypothesis) (Xiang et al., 2008), v) rewetting of old,
non-available or recalcitrant compounds (physical
hypothesis or priming effect) (Kuzyakov, 2010). Also,
root respiration should affected by the return of moist
conditions. Ecosystems with highly seasonal hydrology
are common in Mexico, so soil moisture is likely to be
a key limiting factor in many processes controlling Rg
in Mexican ecosystems.

Mexico has a coastline of 12 122 km, where other non-
rainfall inputs of water could influence the C exchange
from terrestrial ecosystems to the atmosphere. Reimer
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et al. (2015) found that sea surface temperature could
influence gross primary productivity (GPP) trough fog
formation in the Baja California Peninsula; fog is an
important non-rainfall water input in tropical cloud
forests in Veracruz, as well in the deserts across Baja
California, but it has not being linked with R yet.
Carbone ef al. (2011) found in the Santa Cruz Island in
California that seasonal and episodic moisture inputs
from fog can influence the magnitude of Ry. Thus, it is
important to recognize that not only water inputs from
precipitation triggers R, but other non-rainfall inputs,
such as dew or fog could influence R..

Photosynthesis

Although temperature and moisture are the
main temporal controls of R, recent studies provide
evidence that plant photosynthesis influence R at
different temporal scales, challenging the assumption
that most of the soil CO, efflux is microbial-derived
(Kuzyakov and Gavrichkova, 2010; Mencuccini and
Holttd, 2010; Briiggemann et al., 2011; Vargas et al.,
2011). For example, there is evidence that >60% of the
C released by R in a temperate forest could be related
to recent photo-assimilates transported belowground
(Taneva et al., 2006), and root respiration could be
insensitive to decreasing temperatures while microbial
metabolism is inhibited (Singh et al., 2003).

This relationship of R with photosynthesis showed
temporal lags and phase differences from hours to
days. However, these relations depend on ecosystem
type, as well as vegetation phenology. For example,
Vargas et al. (2011) showed that different forest types
(e.g., Mediterranean, temperate, boreal) could present
the same temporal lag between photosynthesis and R
(i.e., one day) but the duration (in days) of the effect
differed. In contrast, grasslands used photoassimilates
produced the same day for root respiration (Tang et al.,
2005; Bahn et al., 2009).

Temporal Variation

Seasonal variation of Rg has been observed in
almost every ecosystem. This variation is driven by
seasonality of temperature, light, soil moisture, and
the derived growing seasons of the vegetation and
soil biota. This variation can be explained by leaf
area index (LAI), litter production and root biomass
(Thomas et al., 2000). Phenology plays a key role,

mainly through the timing of litterfall, labile C fraction
availability, and root turnover (Curiel Yuste et al.,
2004). In special cases like wetlands, the main factor
controlling Ry is the tidal fluctuation where spring-neap
tide cycles results in a fluctuating soil O, concentration,
which limits or enhances both microbial and root
activity and thus R (Lovelock, 2008).

Successional changes in an ecosystem also drive
variability of Ry during long-time scales (Chapin
et al., 2002). During secondary succession, R, may
rise substantially because some disturbances (e.g.,
logging, hurricanes, floods, but not fire) may input
large amounts of labile C into the soil (Vargas, 2012a).
This enhancement of R, eventually subsides (Luo and
Zhou, 2006). In late succession, R is expected to be
high due to litter production and accumulation, and
root density (Kolari ef al., 2004; Luo and Zhou, 2006,
Kopittke et al., 2013).

Spatial Variation

Soil properties and dynamics are vertically and
horizontally heterogeneous across the landscape,
changing within a few centimeters (Figure 1). Soil
texture and tortuosity affect the diffusion rate of the
gases within the soil (Moldrup et al, 2001). The
local availability of nutrients affects soil microbiota
composition and activity, influencing R rates (Lipson
etal., 2005; Almagro et al., 2013). Soil temperature and
moisture are spatially heterogeneous (Huxman et al.,
2004), creating spots where the metabolic activity of
microbes and fine roots are higher or lower (Jenerette
et al., 2008) producing hot spots and hot moments of
R, across the landscape (Leon et al., 2014). Special
attention has been paid to the effect of vegetation
on R.. For example, Barron-Gafford er al. (2011)
studied the dynamics of R, under different cover types
(under grasses or mesquites, and inter-canopy), Tang
and Baldocchi (2005) evaluated the influence of the
proximity of trees on R, Cable et al. (2011) compared
R, in seven different deserts, and Rochette ez al. (1991)
evaluated the influence of different crops on the efflux
of CO, from the soil.

METHODS AND TECHNIQUES TO MEASURE
AND ESTIMATE SOIL RESPIRATION

There are different approaches to measure R in the
field (Figure 2): i) CO, trapping, ii) measurement of
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Figure 1. Schematic representation of the main components of soil respiration. Autotrophic respiration is mainly controlled by
carbon allocation by the xylem/phloem transport, meanwhile heterotrophic respiration is controlled by substrate availability;
however, both fluxes are temperature and moisture dependent. The scales on the sides represent a gradient, being darker the
highest and clearer the lowest. This figure was recreated after the conceptual models of Ryan and Law 2005; Kuzyakov and
Gavrichkova, 2010; Briiggemann et al., 2011. Figure produced by Lluvia B. Vargas-Gastélum.

surface concentration changes, and iii) measurement
of CO, along soil profiles. These techniques had been
widely used elsewhere but seldom in Mexico. Here
we briefly describe their operational principles. The
first two are typically used with a ring inserted several
centimeters into the ground and projecting above the
surface, defining both a surface and its lower entry,
installed some weeks in advance of measurements to
allow acclimation of the soil system to the disturbance.

The trapping technique consists of placing a
chamber hermetically in the soil ring, collecting air or
CO, after some time interval for further analysis in the
lab. Collecting devices are typically syringes or alkali.
With syringes, the CO, concentration is measured
using a gas chromatograph; for the alkali trap, CO, is
measured by simple chemical procedures.

For estimation from the rate of change of CO,
concentration, a chamber placed on the soil ring,
attached to an Infra-Red Gas Analyzer (IRGA), air
is circulated actively or passively in the system and
CO, concentration is measured repeatedly (for a few
minutes) through its adsorption of specific bands of
light (Cueva-Rodriguez et al., 2012).

The gradient method is based on the Fick’s law of
diffusion and consists of measuring CO, concentrations

Heterotrophic respiration
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at several depths in the soil profile with solid-state
non-dispersive infrared CO, sensors (De Jong and
Schappert 1972; Tang et al., 2003; Maier and Schack-
Kirchner, 2014). Measurements are made often over
weeks or months (after acclimation to the installation).
These methods have errors, both systematic
(Davidson et al., 2002; Pumpanen et al., 2004) and
random (Savage et al., 2008; Cueva et al., 2015), but
the former are relatively well-studied (Simunek and
Suarez, 1993; Fang and Moncrieff, 1996; Janssens
et al., 2000; Rayment, 2000; Davidson et al., 2002;
Pumpanen et al., 2003, 2004; Pingintha et al., 2010;
Heinemeyer et al., 2011; Maier and Schack-Kirchner,
2014). While systematic errors are related to improper
calibration, instrument malfunction, or mistakes in data
handling, random errors are caused by unknown and
unpredictable sources (Cueva et al., 2015).

SOIL RESPIRATION IN MEXICO

While gas emissions from soils have been
measured since almost 90 years ago (Lundegardh,
1927), the first measurements of soil gas exchange
published in peer review literature from Mexico were
in the early 90s, (Davidson et al., 1991, 1993; Garcia-
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Figure 2. Schematic representation of the different methods and techniques to measure
and estimate soil respiration. See Section 3 for further explanation. Figure based on
Livingston and Hutchinson, 1995; Luo and Zhou, 2006; Vargas and Allen, 2008¢; Risk

et al., 2011; Cueva-Rodriguez et al., 2012.

Meéndez et al., 1991). The first measurements of soil
CO, efflux were reported in 2004 (Table 1). Most of
the research on R, in Mexico had been carried out
in agroecosystems, followed by forests, shrublands,
grasslands, and wetlands (Table 1). The most common
method to estimate soil gas emissions had been the
syringe method, followed by the IRGA-based (closed
system) method, and least-used have been the alkali
and gradient methods. It must be emphasized that most
of the studies have focused on spatial variation or the
effect of a treatment, and few studies had been about
the temporal variation of R.

The Ry research in Mexico for agroecosystems
have been focused on amending crops yields without

increasing soil CO, emissions. It is known that the
conversion from natural to managed ecosystems (e.g.,
agroecosystems) causes depletion of SOC (Guo and
Gifford, 2002), due to the alteration of the balance
between C inputs (e.g., GPP, photosynthesis, litterfall)
and outputs (e.g., R, photodegradation) of (Kim and
Kirschbaum, 2015). This type of research has been
preponderant in Mexico, reflecting the high rate of land
use change (Balbontin et al, 2009; Sanchez-Colon
et al., 2009).

Changes in soil CO, efflux have also been examined
for different management practices in agricultural land.
For example, the addition of fertilizers increased soil
CO, efflux in bean and maize cultivations (Fernandez-
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Table 1. Soil respiration studies in Mexico.

Reference Method

Measurement type  Ecosystem type(s)

Question type  Scale

Campos, 2004 NSS-NTF Alkali

Campos, 2006 NSS-NTF Alkali

Vargas and Allen, 2008b GM IRGA
Covaleda et al., 2009 NSS-TF IRGA
Fernandez-Luquefio ef al., 2009 NSS-NTF  Syringe
Fernandez-Luquefio et al., 2010 NSS-NTF  Syringe
Lopez-Valdez et al., 2011 NSS-NTF  Syringe
Aguilar-Chavez et al., 2012 NSS-NTF  Syringe

NSS-TF IRGA
NSS-TF IRGA

Baez-Pérez et al., 2012
Cueva-Rodriguez et al., 2012

Dendooven et al., 2012 NSS-NTF  Syringe
Fuentes et al., 2012 NSS-TF IRGA
Juarez-Rodriguez et al., 2012 NSS-NTF  Syringe

Ruiz-Vega et al., 2012 NSS-TF IRGA

Vargas, 2012 GM IRGA
Vargas, 2012 GM IRGA
Ikkonen et al., 2013 NSS-NTF  Syringe
Ruiz-Valdiviezo et al., 2013 NSS-NTF Syringe

NSS-TF IRGA
NSS-NTF  Alkali

Baez-Pérez et al., 2014
Campos, 2014

Diaz-Rojas et al., 2014 NSS-NTF Syringe
Hernandez et al., 2014 NSS-NTF  Syringe
Hernandez-Alarcon and Cordova, 2014 NSS-NTF Syringe

Leon et al., 2014 NSS-TF IRGA

Robles-Zazueta et al., 2014 GM IRGA
Villanueva-Lopez et al., 2014 NSS-TF IRGA
Gonzalez-Méndez et al., 2015 NSS-NTF  Syringe
Marin-Muiliz et al., 2015 NSS-NTF  Syringe

Agroecosystem (C), tropical TV, SV Season
cloud forest

Agroecosystem (C), grassland, TV, SV Year
tropical cloud forest

Tropical forest TV Year
Oak-pine forest, grassland TV, SV Year
Agroecosystem (C) ET, TV Season
Agroecosystem (C) ET, TV Season
Agroecosystem (C) ET, TV Season
Agroecosystem (C) ET, TV Season
Agroecosystem (C)

Semiarid shrubland TV,SV Days
Agroecosystem (C) TV, SV Years
Agroecosystem (C) TV, SV Year
Agroecosystem (C) ET, TV Days
Agroecosystem (C) ET, TV Season
Tropical Forest TV Year
Tropical Forest TV Year
Montane Cloud Forest TV, SV Day
Agroecosystem (C) ET, TV Season
Agroecosystem (C) ET, TV Season
Agroecosystem (C), coniferous SV, TV Year
forest, tropical cloud forest

Agroecosystem (C) ET, TV Season
Wetland SV, TV Season
Cloud forest, Agroecosystem

(C.F)

Semiarid shrubland SV, TV Year
Semiarid shrubland TV, SV Year
Agroecosystem (C,F) ET, TV Season
Agroecosystem (C) TV, SV Season
Wetland TV, SV Years

(N)SS = (Non-) Steady-State; (N) TF = (Non-) Trough-Flow; C = Cropland; F = Farmland; TV = Temporal Variation; SV = Spatial Variation; ET = Effect Treatment.

Luqueno et al., 2009, 2010), but had no effect in a
sunflower cultivation (Lopez-Valdez et al., 2011). The
addition of charcoal reduced CO, emissions (Aguilar-
Chavez et al., 2012). Contrasting results were found in
comparison between conventional and conservational
agricultural practices, such as no changes in either
maize or wheat cultivations (Dendooven et al., 2012;
Ruiz-Vega et al., 2012), but reduced emissions with the
reduction of mechanical disturbance and the retention
of crop residues after harvest (Fuentes et al., 2012).

Despite of the negative, null or positive effect on R,
many of the latter studies coincide that SOC increased
when fertilizers or charcoal (e.g., urea, waste water,
biochar) were added, and where little or no disturbance
was present (e.g., reduced or zero tillage).

The first Rg study in México was conducted in
a tropical cloud forest (Table 1). It is important to
highlight that several of the studies in forest landscapes
Mexico deal with the effects of land use changes,
where R increases while SOC decreases (Campos,
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2004, 2006, 2014; Covaleda et al., 2009). It is also
noteworthy that the highest R rates reported globally
was from a Mexican tropical deciduous forest in the
Yucatan Peninsula, after perturbation occasioned by
Hurricane Wilma (Table 2; Vargas and Allen, 2008b;
Bond-Lamberty and Thomson, 2010). The influence
of the hurricane enhanced R, due to plant defoliation
(Vargas, 2012b). Thus, we highlight the importance of
high-frequency (e.g., 30, 60 min) and also opportunistic
measurements, to understand the effects of diurnal,
seasonal, and inter-annual variations because they offer
the opportunity to understand the effects of extreme
events on ecosystem’s carbon fluxes.

Although almost half of the Mexican territory is
arid or semiarid, only a few studies of R had been
carried out in these regions. Because ecosystems in
these climates are characterized by patchy vegetation
patterns, soil physical characteristics (e.g., moisture
and temperature) that vary greatly across only a few
meters. The complex spatio-temporal dynamics in soil
processes can include ephemeral periods with very
high R rates (Table 2). For example, in a subtropical
shrubland in Sonora, Robles-Zazueta et al. (2014)
estimated R; under woody canopies and exposed
patches (bare soil) over the growing season of 2012,
finding evidence for a strong but differentiated control
of precipitation pulses over R, during the rainy season.
Although no explicit measurements were carried to
explain the R, differences between the vegetated and
the exposed patches, the larger Ry fluxes following

precipitation events in bare patches (Figure 3) are
probably explained by rainfall not reaching the ground
due to canopy interception in vegetated patches. On
the same study site, Cueva-Rodriguez et al. (2012)
found spatial differences in Ry related to different plant
species. Also in a mediterranean-climate shrubland
in Baja California, Leon et al. (2014) found that Ry
increased by 522% after rewetting of the soil following
the dry season but remained elevated during part
of the growing season. Here, spatial variability was
strong and best-related to local soil moisture and
litter accumulation. These studies coincide that the
main driver of R, was water availability, while soil
temperature only extended an influence when water
was present. It has recently demonstrated that arid
and semiarid ecosystems play a key role on the global
carbon cycle (Poulter et al, 2014), emphasizing the
importance of studies that would propose alternative
models to describe the functional controls on R¢ water
limited ecosystems

Hernéandez et al. (2014) measured CO, emissions in
freshwater wetlands and flooded grasslands in Veracruz.
CO, emissions were higher during the dry season and
decreased during the rainy season, with rates similar to
the windy season. In adjacent freshwater marshes and
swamps Marin-Mufiiz ez al. (2015) measured R during
two years, over the dry, rainy and windy seasons. The
highest rates of emission were measured during the dry
season, followed by the rainy season, and the lowest
rates during the windy season. Soil CO, emissions

Table 2. Minimum and maximum values reported for soil respiration rates in Mexico (g C m?d).

Reference Agricultural Forest Grassland Shrubland Wetland
Campos, 2004 2.76-8.45 1.8-5.22

Campos, 2006 0.43-3.07 0.54-2.21 1.51-4.87

Cueva-Rodriguez et al., 2012 0.52-9.34

Vargas, 2012 3.11-13.71

Dendooven et al., 2012 0.1-1.8

Fuentes et al., 2012 2.4-38.4

Campos, 2014 0.43-3.1 0.54-2.15 1.51-4.87

Leon et al., 2014 0.41-2.18

Robles-Zazueta et al., 2014 0.01-3.31

Villanueva-Lopez et al., 2014 0.93-1.4

Gonzalez-Méndez et al., 2015 0.24-5.52

Hernandez et al., 2014 1.25-7.2

Marin-Muiiiz et al., 2015

0.13-4.91
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from wetlands have been related to biological variables
(SOC quality and availability, dissolved organic carbon
(DOC); McLeod et al.,, 2011), as well as to physical
variables such as dissolved oxygen, hydroperiod,
temperature, salinity, electrical conductivity and pH
(Alongi, 2014).

While most research on R has been carried out
in agroecosystems and forests, and many ecosystems
have been poorly represented in Mexico some
commonalities emerge across the available studies. For
example, in most of the ecosystem presented in this
manuscript R could be coupled with soil temperature,
as long as moisture is not a limiting factor. However,
since most of the studies of Ry in Mexico had been
based in low frequency measurements, we cannot
know which could be the threshold of soil moisture
to become a limiting factor. Related to the latter, Kim
et al. (2012) suggested the designs of manipulative
experiments that could enhance our knowledge about
the interaction of soil rewetting. Furthermore, also Kim

Figure 3. Seasonal variation of RS in a subtropical shrubland of
Sonora. Estimates of RS were conducted with the gradient method
during the rainy season of 2012 (Robles-Zazueta et al., 2014).

et al. (2012) highlighted that most of the studies that
explores the effect of soil moisture on R, are carried
out on small spatial scales, and that is critical to scale
up these interactions at ecosystem level.

Mexico is a country with high rates of land
use change, mainly by deforestation and livestock
grassing. Thus, intensive agricultural practices could
enhance R, and deplete SOC pools, while conservation
agricultural practices could decrease R and increase
the SOC. However, despite that most of the studies of
R, in Mexico had been carried out in agroecosystems,
few of them had compared the trade-off of converting
natural to managed ecosystems.

FUTURE DIRECTIONS OF SOIL
RESPIRATION RESEARCH IN MEXICO

The Mexican Carbon Program (Programa
Mexicano del Carbono; PMC) has developed databases
and improved techniques and methodologies related to
SOC stocks (Fuentes-Ponce et al., 2012), however,
these stocks result from different processes, both
aboveground (e.g., photosynthesis) and belowground
(e.g., decomposition) that are not well described
in Mexican ecosystems. For example, although in
Mexico exists long-term observations of above-ground
production and below-ground decomposition (e.g.,
Anaya et al., 2012), high-frequency measurements
(e.g., every 30-60 min) are needed to understand short-
term processes on an hourly-to-daily basis (Carbone
and Vargas, 2008).

Most of the studies of C exchange between the
ecosystems and the atmosphere in Mexico had been
originated from individual efforts (Vargas et al., 2013),
and it is reflected in the R research in Mexico: few
sites with various publications or many sites with one
publication. Furthermore, most of the studies presented
in this review do not meet the criteria to be included
in global databases, being only the studies of Campos
(2006) and Vargas and Allen (2008c¢) included on the
Global Database of Soil Respiration Data (V 3.0, Bond-
Lamberty and Thomson, 2014). This situation reflects
that most of the studies of Ry in Mexico had been
conducted on short-term scales (e.g., days, weeks, and
season), making a poor representation of the country in
continental-to-global synthesis.

For these reasons, is preponderant to adopt
knowledge from global experiences and develop
expertise across the country to acquire long-term R data
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and fulfill national needs to study the C cycle in Mexico.
For example, methodologies should incorporate long-
term high-and-low frequency measurement protocols,
with criteria to study the spatial heterogeneity and a
strategy to integrate high frequency measurements.
Furthermore, it should be a priority for Mexican C cycle
scientists to develop technologies that reduce costs to
transfer these technologies from developed countries
(i.e., Cueva-Rodriguez et al., 2012). Meanwhile, we
need to develop a strategic plan to advance on the Ry
research in Mexico, as well as collaborative research
groups.

It is noteworthy that none of the peer-reviewed
studies of R in Mexico has been carried outina Mexican
Long-Term Ecological-Research site (Mex-LTER).
Incorporating long-term measurements in Mex-
LTER sites would offer a great variety of contrasting
ecosystems with a natural altitudinal gradient, as well
as an integrative framework between ecologists and
social scientists (Maass et al., 2010). Thus, long-term
R, studies in Mex-LTER sites could provide baseline
information to identify the responses from ecosystems
after low-but-constant or fast-and-rare disturbances
(Turner et al., 2003). However, little has been done
in Mexico about how disturbances affects functional
processes in ecosystems (Calderon-Aguilera et al.,
2012). For example, tropical cyclones and hurricanes
are fast-and-rare natural disturbances that have a strong
influence on terrestrial vegetation across Mexico
(Farfan et al., 2014). Vargas (2012a) highlighted the
importance of high-frequency measurements in a fast-
and-rare disturbance, documenting the legacies of a
hurricane on R in the Yucatan Peninsula. However,
if Vargas (2012a) had had only low-frequency
measurements we would only know the status of the
ecosystem before-and-after the hurricane, leading only
to infer what happened during the hurricane.

MexFlux sites (Vargas et al., 2013) also offer
an opportunity to carry out R measurements across
Mexican ecosystems. Since R estimates at the
represented ecosystems would be accompanied by
estimates the net ecosystem exchange of matter (e.g.,
CO,,CH,)and energy (e.g., H,O) between the ecosystem
and the atmosphere and combined efforts will allow
more refined estimates of ecosystem fluxes by empirical
models (e.g., Reichstein et al., 2005; Lasslop et al.,
2010). Flux partitioning of different C fluxes within
the ecosystem had been commonly compared with Rg
measurements as a proxy of ecosystem respiration.

Moreover, data of R in conjunction with net ecosystem
exchange (NEE) measurements to estimate ecosystem
respiration could provide insights for partitioning
of ecosystem respiration on its, heterotrophic and
autotrophic components, which reminds as a central
question in C cycle research.

Thus, the future directions on R research in Mexico
should be:

a) Develop a base-line understanding of the
biophysical controls of R across different ecosystems
in Mexico, including the responses when a land use
change occurs,

b) establish long-term (>5 years) observatory
networks to measure R across different ecosystems
and management schemes,

c¢) within the latter, establish manipulative experiments
to obtain mechanistic knowledge of how different
scenarios (e.g., increasing temperature or changing
timing and magnitude of precipitation) could affect R
(Norby and Luo, 2004),

d) when an array of long-term measurements has been
established, large-scale modelling of R using satellite
data could be carried out (i.e., Wu et al., 2014),

e) develop a Mexican database of Ry records, with
a quality assurance and quality control (QA/QC)
protocols (Carbone and Vargas, 2008),

f) integrate aboveground phenological measurements
and net fluxes (e.g., phenocams, Richardson e al.,
2007; Vargas et al., 2013),

g) integrate belowground phenological measurements
(e.g., minirhizotrons, (Hasselquist et al., 2009),

h) integrate emerging disciplines to explain patterns
and mechanisms (e.g., ecological genomics, Escalante
etal.,2014),

i) isolate autotrophic and heterotrophic respiration
from total R (Hanson et al., 2000),

j) integrate other greenhouse gases related to R
measurements (e.g., CH,, NO, NO,),

k) continuous interaction of universities, research
centers, and government agencies, as well as with other
networks (e.g., MexFlux, Mex-LTER).

Coupled with the lack of knowledge of R in
Mexican ecosystems, predicted and actual temperature
changes across the country (Diffenbaugh et al., 2008;
Tejeda-Martinez et al., 2008; Pavia et al, 2009;
Garcia-Cueto et al., 2010), as well as changes in
precipitation patterns (Arriaga-Ramirez and Cavazos,
2010; Pérez-Morga et al., 2013) with less frequent but
more intense precipitation events (Cavazos, 2012),
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longer and drier dry seasons, and increasing water
stress across the country (Fuentes-Franco et al., 2015),
urges the Mexican scientific community to increase its
interest and efforts in studying ecosystem C fluxes. We
believe that strong synergies could become fruitful if
interdisciplinary research in this field is carried out.
Concluding, this review should not be considered as
a baseline of the knowledge on Ry in Mexico, but it
should be re-evaluated on the middle (e.g., 5 years) and
long (e.g., 10 years) term to know what progresses had
been made.
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