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SUMMARY

Soil respiration (RS) is a CO2 efflux from 
the soil to the atmosphere def ined as the sum of 
autotrophic (respiration by roots and mycorrhizae), 
and heterotrophic (respiration of microorganisms that 
decompose fractions of organic matter and of soil 
fauna) respiration. Globally, RS is considered to be 
the second largest flux of C to the atmosphere. From 
published literature it is clear that its main controls 
are soil temperature, soil moisture, photosynthesis, 
organic matter inputs and soil biota composition. 
Despite its relevance in C cycle science, there have 
been only twenty eight studies in Mexico in the last 
decade where direct measurement of gas exchange was 
conducted in the f ield. These studies were held mostly 
in agricultural and forest ecosystems, in Central and 
Southern Mexico where mild subtropical conditions 
prevail. However, arid, semi-arid, tropical and wetland 
ecosystems may have an important role in Mexico’s 
CO2 emissions because of their extent and extensive 
land use changes. From the twenty eight studies, only 
two provided continuous measurements of RS with 
high temporal resolution, highlighting the need for 
long-term studies to evaluate the complex biophysical 
controls of this flux and associated processes over 
different ecological succession stages. We conclude 
that Mexico represents an important opportunity to 
understand its complex dynamics, in national and 
global context, as ecosystems in the country cover a 
wide range of climatic conditions. This is particularly 
important because deforestation and degradation of 
Mexican ecosystems is rapidly increasing along with 
expected changes in climate.

Index words: biogeosciences; carbon cycle; soil CO2 
efflux; soil temperature; soil moisture.

RESUMEN

La respiración del suelo (RS) se def ine como la 
suma de la respiración autótrofa (raíces y micorrizas) 
y la respiración heterótrofa (la de los microorganismos 
del suelo que descomponen materia orgánica y de la 
fauna del suelo). A nivel global, a RS se le considera el 
segundo flujo de C más importante hacia la atmósfera. 
La literatura denota que sus principales controles son 
la temperatura y humedad del suelo, la fotosíntesis, la 
disponibilidad de materia orgánica y la composición 
de la biota del suelo. A pesar de su relevancia en 
la ciencia del ciclo del C, ha habido solamente 28 
estudios publicados en revistas indizadas en México 
en la última década, en los cuales se llevaron a cabo 
mediciones directas de intercambio de gases en campo. 
Estos estudios principalmente representan sistemas 
agrícolas y bosques en el centro y sur del país. Los 
ecosistemas áridos y semiáridos, tropicales y los 
humedales requieren atención debido a su cobertura 
espacial, su variación  de temperatura y humedad, y 
la amenaza de los cambios de uso de suelo. De los 28 
trabajos en la literatura, sólo en dos midieron RS de 
manera continua, remarcando la necesidad de llevar a 
cabo estudios a largo plazo para evaluar los complejos 
controles biofísicos y procesos asociados a este flujo 
en distintas fases de sucesión ecológica. Concluimos 
que México representa una oportunidad importante 
para entender la compleja dinámica de RS, relevante 
en contextos nacionales e internacionales, debido a la 
fuerte estacionalidad que gobierna en la mayoría de 
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los ecosistemas mexicanos. Esto es particularmente 
relevante ya que la deforestación y la degradación 
en los ecosistemas mexicanos están incrementando 
rápidamente mientras que se avizoran cambios 
importantes en la climatología del país.

Palabras clave: biogeociencias; ciclo de carbono; 
flujo de CO2 del suelo; temperatura de suelo; humedad 
de suelo.

INTRODUCTION

Soil respiration (RS, also known as soil CO2 
efflux) is the second largest carbon (C) flux between 
terrestrial ecosystem and the atmosphere (Raich and 
Schlesinger 1992; Bond-Lamberty and Thomson 
2010). Globally, it exceeds the input of carbon dioxide 
(CO2) by anthropogenic fossil fuels combustion to 
the atmosphere by an order of magnitude (Reichstein 
and Beer, 2008). Then, the importance of understand 
the dynamics and controls of RS is that it represents a 
net loss of C from the soils (Lal, 2004), and even a 
small change in this pool could represent a signif icant 
feedback to the Earth system (Reichstein et al., 2003).

There is a growing community across the globe 
interested in measuring and understanding soil C 
fluxes. Furthermore, there are growing databases for 
ecosystem CO2 fluxes (e.g., FLUXNET, AmeriFlux, 
MexFlux) (Baldocchi et al., 2001; Vargas et al., 
2013) and RS (Bond-Lamberty and Thomson, 2014).  
However, most of the studies had been carried out in 
Europe and the United States (Bond-Lamberty and 
Thomson, 2010) at latitudes above 30° N. Ecosystems 
in those regions are characterized by temperate 
climates, with mean annual temperatures between 
5-17 °C and annual rainfall above 600 mm; in contrast, 
arid, semiarid, tropical, and subtropical regions have 
been poorly represented, denoting that more tropical 
countries are underrepresented in continental-to-
global understanding of the C cycle (Vargas et al., 
2012).This bias has regional, continental, and global 
implications, from scientif ic understanding to policy 
making and management that could be reduced if more 
spatially ref ined and equally distributed estimations 
and measurements exists, to improve our knowledge of 
the factors that govern RS across time and space (King 
et al., 2015).

Mexico has many contrasting ecosystems, 
spanning from arid deserts to evergreen and tropical 

forest. Besides, Mexico exhibits heterogeneous 
landscapes due to land use change, mainly from 
deforestation, and livestock grassing (Vargas et  al., 
2012). Furthermore, Mexico is prone to natural 
hidrometeorological disturbances, such as the North 
American Monsson across the Pacif ic Ocean, and 
tropical cyclones occurring in the Caribbean and 
the Gulf of Mexico. Despite the great opportunity 
describe natural phenomena in contrasting gradients 
(e.g., altitudinal, disturbances) and the potential for 
manipulative experiments, Mexican scientists have 
barely studied the dynamics of RS and other ecosystem 
C fluxes (Escobar et al., 2008).

The main objective of this paper is to highlight 
the opportunities that scientists interested in RS (e.g., 
biologists, ecologists, soil scientists, hydrologists, 
modelers) have to advance on the knowledge of soil 
C cycle science. We f irst review the global literature 
of RS in order to give a brief description of the main 
mechanisms that controls RS, as well as common 
methodologies to measure it. Then, we make a synthesis 
from RS studies held in Mexico, to discuss the state of 
the art in this topic in the country. For the latter, we 
only focused on published literature where fluxes where 
measured or sampled in the f ield, excluding studies 
where soil samples were incubated in the laboratory.

MECHANISMS

Soil respiration (RS) is a composite of two main 
CO2 sources (Ryan and Law, 2005): i) autotrophic 
respiration, the respiration by roots and mycorrhizae, 
and ii) heterotrophic respiration, the respiration 
of microorganisms within the soil that decompose 
fractions of organic matter plus the respiration of 
soil fauna. In view of the latter, RS exhibits complex 
dynamics across different spatio-temporal scales 
(Vargas et al., 2010b). The main abiotic controls of 
RS are soil temperature (Lloyd and Taylor, 1994; 
Davidson and Janssens, 2006) and soil moisture 
(Kim et al., 2012), while soil physical characteristics 
(Pumpanen et al., 2003) and organic matter inputs 
(Curiel Yuste et al., 2007) influence the composition of 
soil biota (Nannipieri et al., 2003). Although RS is the 
main CO2 efflux from the soil to the atmosphere, other 
non-biological processes contributes to CO2 emissions 
(Rey, 2015). An example of the latter is the chemical 
weathering of calcium carbonate (Ca  CO3) (Serrano-
Ortiz et al., 2010; Hamerlynck et al., 2013) and pore 
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degassing following major inputs of water (Liu et al., 
2002; Lee et al., 2004).

Biophysical Controls

At different spatial scales (e.g., plot to continental), 
soil temperature and soil moisture have been considered 
the main abiotic factors that account for the major 
temporal variability of RS (Subke and Bahn, 2010). 
Although the temperature dependence of RS has been 
greatly studied, there is still an open discussion about 
the temperature sensitivity of soil organic matter (SOM) 
decomposition (Giardina and Ryan, 2000; Davidson 
and Janssens, 2006; Conant et  al., 2011), and the 
dependence of  RS on soil moisture is not well understood 
(Moyano et al., 2012; Vicca et al., 2014). Furthermore, 
studies in the last two decades have demonstrated that 
photosynthesis plays also a key role regulating RS 
(Högberg et al., 2001; Vargas et al., 2011). Thus, the 
interactions among these factors across temporal scales 
cause great uncertainties in estimations of RS, and it 
becomes diff icult to extrapolate site measurements to 
the estimation of C budgets at different spatial scales.

Temperature

In most of the global literature, the variation of RS 
has been treated as a function of soil temperature (Lloyd 
and Taylor, 1994), the most widely used equations 
being those of van’t Hoff and Arrhenius (Sierra et al., 
2011). The temperature dependence of RS reflects the 
effect of temperature on microbial metabolism which 
is derived from enzymatic kinetics (Schipper et al., 
2014). This temperature dependence of RS had received 
much attention in recent years due to contradictory 
results (von Lützow and Kögel-Knabner, 2009) 
resulting from different methods, such as incubation 
experiments, f ield measurements (Rinkes et al., 2013), 
different substrate pools [e.g., high-quality-labile-
fresh or low-quality-recalcitrant-old (Van Hees et al., 
2005)], different metabolic temperature sensitivities 
of autotrophic or heterotrophic components (Boone 
et al., 1998), or different indices or empirical relations 
used to describe this relationship (Sierra, 2012). 
An important factor is the heterogeneity of abiotic 
and biotic factors within the soil prof ile (texture, 
temperature, moisture, microorganism composition, 
life strategies, acclimatization delays, root composition 
and distribution).

In temperate ecosystems, the diurnal increase and 
decrease of soil temperature is generally reflected 
in RS (Xu and Qi, 2001; Subke et al., 2003). Some 
researchers have observed diel hysteresis and two 
arguments have been proposed to explain this 
phenomenon: i) environmental variables such as 
photosynthate production, litterfall, and soil organic 
carbon (SOC) availability may oscillate out of phase 
with soil temperature (Carbone et al., 2008; Vargas 
and Allen, 2008a); ii) soil temperature is measured at a 
f ixed depth but CO2 efflux represents a prof ile, leading 
to differences in magnitude and phase (Lasslop et al., 
2012). Of course, CO2 production has an intrinsic lag 
with surface efflux, dependent on depth and diffusion 
(Vargas et al., 2010a). The temperature response of 
RS has concerned the scientif ic community because 
climate change would lead to positive feedback of 
CO2 emission to the atmosphere (Fang and Moncrieff, 
2001).

Moisture

Microbial decomposition as well as root respiration 
may be limited by water availability. Global patterns 
of precipitation are changing in terms of number of 
events, event size, and the number of dry days between 
events (Knapp et al., 2015). However, the response of 
RS to precipitation events, or soil moisture, is relatively 
unknown (Kim et al., 2012).

For these reason researches had proposed several 
explanations and hypothesis of what could be 
happening after rain events: i) a rapid degasif ication of 
soil air-f illed pore spaces (Yépez and Williams, 2009), 
ii) a re-hydration of dormant fungi and microbes and an 
increase of their biomass (Chowdhury et al., 2011), iii) 
microbial cell lysis due to a osmotic shock (Van Gestel 
et al., 1992), iv) release of microbial osmolytes that may 
support broader increases in metabolism (metabolic 
hypothesis) (Xiang et al., 2008), v) rewetting of old, 
non-available or recalcitrant compounds (physical 
hypothesis or priming effect) (Kuzyakov, 2010). Also, 
root respiration should affected by the return of moist 
conditions. Ecosystems with highly seasonal hydrology 
are common in Mexico, so soil moisture is likely to be 
a key limiting factor in many processes controlling RS 
in Mexican ecosystems.
Mexico has a coastline of 12 122 km, where other non-
rainfall inputs of water could influence the C exchange 
from terrestrial ecosystems to the atmosphere. Reimer 
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et al. (2015) found that sea surface temperature could 
influence gross primary productivity (GPP) trough fog 
formation in the Baja California Peninsula; fog is an 
important non-rainfall water input in tropical cloud 
forests in Veracruz, as well in the deserts across Baja 
California, but it has not being linked with RS yet. 
Carbone et al. (2011) found in the Santa Cruz Island in 
California that seasonal and episodic moisture inputs 
from fog can influence the magnitude of RS. Thus, it is 
important to recognize that not only water inputs from 
precipitation triggers RS, but other non-rainfall inputs, 
such as dew or fog could influence RS.

Photosynthesis

Although temperature and moisture are the 
main temporal controls of RS, recent studies provide 
evidence that plant photosynthesis influence RS at 
different temporal scales, challenging the assumption 
that most of the soil CO2 efflux is microbial-derived 
(Kuzyakov and Gavrichkova, 2010; Mencuccini and 
Hölttä, 2010; Brüggemann et al., 2011; Vargas et al., 
2011). For example, there is evidence that >60% of the 
C released by RS in a temperate forest could be related 
to recent photo-assimilates transported belowground 
(Taneva et  al., 2006), and root respiration could be 
insensitive to decreasing temperatures while microbial 
metabolism is inhibited (Singh et al., 2003).

This relationship of RS with photosynthesis showed 
temporal lags and phase differences from hours to 
days. However, these relations depend on ecosystem 
type, as well as vegetation phenology. For example, 
Vargas et al. (2011) showed that different forest types 
(e.g., Mediterranean, temperate, boreal) could present 
the same temporal lag between photosynthesis and RS 
(i.e., one day) but the duration (in days) of the effect 
differed. In contrast, grasslands used photoassimilates 
produced the same day for root respiration (Tang et al., 
2005; Bahn et al., 2009).

Temporal Variation 

Seasonal variation of RS has been observed in 
almost every ecosystem. This variation is driven by 
seasonality of temperature, light, soil moisture, and 
the derived growing seasons of the vegetation and 
soil biota. This variation can be explained by leaf 
area index (LAI), litter production and root biomass 
(Thomas et  al., 2000). Phenology plays a key role, 

mainly through the timing of litterfall, labile C fraction 
availability, and root turnover (Curiel Yuste et al., 
2004). In special cases like wetlands, the main factor 
controlling RS is the tidal fluctuation where spring-neap 
tide cycles results in a fluctuating soil O2 concentration, 
which limits or enhances both microbial and root 
activity and thus RS (Lovelock, 2008).

Successional changes in an ecosystem also drive 
variability of RS during long-time scales (Chapin 
et  al., 2002). During secondary succession, RS may 
rise substantially because some disturbances (e.g., 
logging, hurricanes, floods, but not f ire) may input 
large amounts of labile C into the soil (Vargas, 2012a). 
This enhancement of RS eventually subsides (Luo and 
Zhou, 2006). In late succession, RS is expected to be 
high due to litter production and accumulation, and 
root density (Kolari et al., 2004; Luo and Zhou, 2006, 
Kopittke et al., 2013).

Spatial Variation 

Soil properties and dynamics are vertically and 
horizontally heterogeneous across the landscape, 
changing within a few centimeters (Figure 1). Soil 
texture and tortuosity affect the diffusion rate of the 
gases within the soil (Moldrup et al., 2001). The 
local availability of nutrients affects soil microbiota 
composition and activity, influencing RS rates (Lipson 
et al., 2005; Almagro et al., 2013). Soil temperature and 
moisture are spatially heterogeneous (Huxman et  al., 
2004), creating spots where the metabolic activity of 
microbes and f ine roots are higher or lower (Jenerette 
et al., 2008) producing hot spots and hot moments of 
RS across the landscape (Leon et al., 2014). Special 
attention has been paid to the effect of vegetation 
on RS. For example, Barron-Gafford et al. (2011) 
studied the dynamics of RS under different cover types 
(under grasses or mesquites, and inter-canopy), Tang 
and Baldocchi (2005) evaluated the influence of the 
proximity of trees on RS, Cable et al. (2011) compared 
RS in seven different deserts, and Rochette et al. (1991) 
evaluated the influence of different crops on the efflux 
of CO2 from the soil.

METHODS AND TECHNIQUES TO MEASURE 
AND ESTIMATE SOIL RESPIRATION

There are different approaches to measure RS in the 
f ield (Figure 2): i) CO2 trapping, ii) measurement of 
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surface concentration changes, and iii) measurement 
of CO2 along soil prof iles. These techniques had been 
widely used elsewhere but seldom in Mexico. Here 
we briefly describe their operational principles. The 
f irst two are typically used with a ring inserted several 
centimeters into the ground and projecting above the 
surface, def ining both a surface and its lower entry, 
installed some weeks in advance of measurements to 
allow acclimation of the soil system to the disturbance.

The trapping technique consists of placing a 
chamber hermetically in the soil ring, collecting air or 
CO2 after some time interval for further analysis in the 
lab. Collecting devices are typically syringes or alkali. 
With syringes, the CO2 concentration is measured 
using a gas chromatograph; for the alkali trap, CO2 is 
measured by simple chemical procedures.

For estimation from the rate of change of CO2 
concentration, a chamber placed on the soil ring, 
attached to an Infra-Red Gas Analyzer (IRGA), air 
is circulated actively or passively in the system and 
CO2 concentration is measured repeatedly (for a few 
minutes) through its adsorption of specif ic bands of 
light (Cueva-Rodríguez et al., 2012).

The gradient method is based on the Fick’s law of 
diffusion and consists of measuring CO2 concentrations 

at several depths in the soil prof ile with solid-state 
non-dispersive infrared CO2 sensors (De Jong and 
Schappert 1972; Tang et al., 2003; Maier and Schack-
Kirchner, 2014). Measurements are made often over 
weeks or months (after acclimation to the installation).

These methods have errors, both systematic 
(Davidson et al., 2002; Pumpanen et al., 2004) and 
random (Savage et al., 2008; Cueva et al., 2015), but 
the former are relatively well-studied (Simunek and 
Suarez, 1993; Fang and Moncrieff, 1996; Janssens 
et al., 2000; Rayment, 2000; Davidson et al., 2002; 
Pumpanen et al., 2003, 2004; Pingintha et al., 2010; 
Heinemeyer et al., 2011; Maier and Schack-Kirchner, 
2014). While systematic errors are related to improper 
calibration, instrument malfunction, or mistakes in data 
handling, random errors are caused by unknown and 
unpredictable sources (Cueva et al., 2015).

SOIL RESPIRATION IN MEXICO

While gas emissions from soils have been 
measured since almost 90 years ago (Lundegårdh, 
1927), the f irst measurements of soil gas exchange 
published in peer review literature from Mexico were 
in the early 90s, (Davidson et al., 1991, 1993; García-

Figure 1. Schematic representation of the main components of soil respiration. Autotrophic respiration is mainly controlled by 
carbon allocation by the xylem/phloem transport, meanwhile heterotrophic respiration is controlled by substrate availability; 
however, both fluxes are temperature and moisture dependent. The scales on the sides represent a gradient, being darker the 
highest and clearer the lowest. This figure was recreated after the conceptual models of Ryan and Law 2005; Kuzyakov and 
Gavrichkova, 2010; Brüggemann et al., 2011. Figure produced by Lluvia B. Vargas-Gastélum.
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Méndez et al., 1991). The f irst measurements of soil 
CO2 efflux were reported in 2004 (Table 1). Most of 
the research on RS in Mexico had been carried out 
in agroecosystems, followed by forests, shrublands, 
grasslands, and wetlands (Table 1). The most common 
method to estimate soil gas emissions had been the 
syringe method, followed by the IRGA-based (closed 
system) method, and least-used have been the alkali 
and gradient methods. It must be emphasized that most 
of the studies have focused on spatial variation or the 
effect of a treatment, and few studies had been about 
the temporal variation of RS.

The RS research in Mexico for agroecosystems 
have been focused on amending crops yields without 

increasing soil CO2 emissions. It is known that the 
conversion from natural to managed ecosystems (e.g., 
agroecosystems) causes depletion of SOC (Guo and 
Gifford, 2002), due to the alteration of the balance 
between C inputs (e.g., GPP, photosynthesis, litterfall) 
and outputs (e.g., RS, photodegradation) of (Kim and 
Kirschbaum, 2015). This type of research has been 
preponderant in Mexico, reflecting the high rate of land 
use change (Balbontín et al., 2009; Sánchez-Colón 
et al., 2009).

Changes in soil CO2 efflux have also been examined 
for different management practices in agricultural land. 
For example, the addition of fertilizers increased soil 
CO2 efflux in bean and maize cultivations (Fernández-

Figure 2. Schematic representation of the different methods and techniques to measure 
and estimate soil respiration. See Section 3 for further explanation. Figure based on 
Livingston and Hutchinson, 1995; Luo and Zhou, 2006; Vargas and Allen, 2008c; Risk 
et al., 2011; Cueva-Rodríguez et al., 2012.
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Luqueño et al., 2009, 2010), but had no effect in a 
sunflower cultivation (López-Valdez et al., 2011). The 
addition of charcoal reduced CO2 emissions (Aguilar-
Chávez et al., 2012). Contrasting results were found in 
comparison between conventional and conservational 
agricultural practices, such as no changes in either 
maize or wheat cultivations (Dendooven et al., 2012; 
Ruiz-Vega et al., 2012), but reduced emissions with the 
reduction of mechanical disturbance and the retention 
of crop residues after harvest (Fuentes et al., 2012). 

Despite of the negative, null or positive effect on RS, 
many of the latter studies coincide that SOC increased 
when fertilizers or charcoal (e.g., urea, waste water, 
biochar) were added, and where little or no disturbance 
was present (e.g., reduced or zero tillage).

The f irst RS study in México was conducted in 
a tropical cloud forest (Table 1). It is important to 
highlight that several of the studies in forest landscapes 
Mexico deal with the effects of land use changes, 
where RS increases while SOC decreases (Campos, 

Reference Method Measurement type Ecosystem type(s) Question type Scale

Campos, 2004 NSS-NTF Alkali Agroecosystem (C), tropical 
cloud forest

TV, SV Season

Campos, 2006 NSS-NTF Alkali Agroecosystem (C), grassland, 
tropical cloud forest

TV, SV Year

Vargas and Allen, 2008b GM IRGA Tropical forest TV Year
Covaleda et al., 2009 NSS-TF IRGA Oak-pine forest, grassland TV, SV Year
Fernández-Luqueño et al., 2009 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
Fernández-Luqueño et al., 2010 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
López-Valdez et al., 2011 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
Aguilar-Chávez et al., 2012 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
Báez-Pérez et al., 2012 NSS-TF IRGA Agroecosystem (C)
Cueva-Rodríguez et al., 2012 NSS-TF IRGA Semiarid shrubland TV,SV Days
Dendooven et al., 2012 NSS-NTF Syringe Agroecosystem (C) TV, SV Years
Fuentes et al., 2012 NSS-TF IRGA Agroecosystem (C) TV, SV Year
Juárez-Rodríguez et al., 2012 NSS-NTF Syringe Agroecosystem (C) ET, TV Days
Ruiz-Vega et al., 2012 NSS-TF IRGA Agroecosystem (C) ET, TV Season
Vargas, 2012 GM IRGA Tropical Forest TV Year
Vargas, 2012 GM IRGA Tropical Forest TV Year
Ikkonen et al., 2013 NSS-NTF Syringe Montane Cloud Forest TV, SV Day
Ruíz-Valdiviezo et al., 2013 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
Báez-Pérez et al., 2014 NSS-TF IRGA Agroecosystem (C) ET, TV Season
Campos, 2014 NSS-NTF Alkali Agroecosystem (C), coniferous 

forest, tropical cloud forest
SV, TV Year

Díaz-Rojas et al., 2014 NSS-NTF Syringe Agroecosystem (C) ET, TV Season
Hernandez et al., 2014 NSS-NTF Syringe Wetland SV, TV Season
Hernández-Alarcón and Córdova, 2014 NSS-NTF Syringe Cloud forest, Agroecosystem 

(C,F)
Leon et al., 2014 NSS-TF IRGA Semiarid shrubland SV, TV Year
Robles-Zazueta et al., 2014 GM IRGA Semiarid shrubland TV, SV Year
Villanueva-López et al., 2014 NSS-TF IRGA Agroecosystem (C,F) ET, TV Season
González-Méndez et al., 2015 NSS-NTF Syringe Agroecosystem (C) TV, SV Season
Marín-Muñiz et al., 2015 NSS-NTF Syringe Wetland TV, SV Years

Table 1. Soil respiration studies in Mexico.

(N)SS = (Non-) Steady-State; (N) TF = (Non-) Trough-Flow; C = Cropland; F = Farmland; TV = Temporal Variation; SV = Spatial Variation; ET = Effect Treatment.
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2004, 2006, 2014; Covaleda et al., 2009). It is also 
noteworthy that the highest RS rates reported globally 
was from a Mexican tropical deciduous forest in the 
Yucatan Peninsula, after perturbation occasioned by 
Hurricane Wilma (Table 2; Vargas and Allen, 2008b; 
Bond-Lamberty and Thomson, 2010). The influence 
of the hurricane enhanced RS due to plant defoliation 
(Vargas, 2012b). Thus, we highlight the importance of 
high-frequency (e.g., 30, 60 min) and also opportunistic 
measurements, to understand the effects of diurnal, 
seasonal, and inter-annual variations because they offer 
the opportunity to understand the effects of extreme 
events on ecosystem´s carbon fluxes.

Although almost half of the Mexican territory is 
arid or semiarid, only a few studies of RS had been 
carried out in these regions. Because ecosystems in 
these climates are characterized by patchy vegetation 
patterns, soil physical characteristics (e.g., moisture 
and temperature) that vary greatly across only a few 
meters. The complex spatio-temporal dynamics in soil 
processes can include ephemeral periods with very 
high RS rates (Table 2). For example, in a subtropical 
shrubland in Sonora, Robles-Zazueta et al. (2014) 
estimated RS under woody canopies and exposed 
patches (bare soil) over the growing season of 2012, 
f inding evidence for a strong but differentiated control 
of precipitation pulses over RS during the rainy season. 
Although no explicit measurements were carried to 
explain the RS differences between the vegetated and 
the exposed patches, the larger RS fluxes following 

precipitation events in bare patches (Figure 3) are 
probably explained by rainfall not reaching the ground 
due to canopy interception in vegetated patches. On 
the same study site, Cueva-Rodríguez et al. (2012) 
found spatial differences in RS related to different plant 
species. Also in a mediterranean-climate shrubland 
in Baja California, Leon et al. (2014) found that RS 
increased by 522% after rewetting of the soil following 
the dry season but remained elevated during part 
of the growing season. Here, spatial variability was 
strong and best-related to local soil moisture and 
litter accumulation. These studies coincide that the 
main driver of RS was water availability, while soil 
temperature only extended an influence when water 
was present. It has recently demonstrated that arid 
and semiarid ecosystems play a key role on the global 
carbon cycle (Poulter et al., 2014), emphasizing the 
importance of studies that would propose alternative 
models to describe the functional controls on RS water 
limited ecosystems.

Hernández et al. (2014) measured CO2 emissions in 
freshwater wetlands and flooded grasslands in Veracruz. 
CO2 emissions were higher during the dry season and 
decreased during the rainy season, with rates similar to 
the windy season. In adjacent freshwater marshes and 
swamps Marín-Muñiz et al. (2015) measured RS during 
two years, over the dry, rainy and windy seasons. The 
highest rates of emission were measured during the dry 
season, followed by the rainy season, and the lowest 
rates during the windy season. Soil CO2 emissions 

Reference Agricultural Forest Grassland Shrubland Wetland

Campos, 2004 2.76-8.45 1.8-5.22
Campos, 2006 0.43-3.07 0.54-2.21 1.51-4.87
Cueva-Rodríguez et al., 2012 0.52-9.34
Vargas, 2012 3.11-13.71
Dendooven et al., 2012 0.1-1.8
Fuentes et al., 2012 2.4-38.4
Campos, 2014 0.43-3.1 0.54-2.15 1.51-4.87
Leon et al., 2014 0.41-2.18
Robles-Zazueta et al., 2014 0.01-3.31
Villanueva-López et al., 2014 0.93-1.4
González-Méndez et al., 2015 0.24-5.52
Hernandez et al., 2014 1.25-7.2
Marín-Muñiz et al., 2015 0.13-4.91

Table 2. Minimum and maximum values reported for soil respiration rates in Mexico (g C m-2 d-1).
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from wetlands have been related to biological variables 
(SOC quality and availability, dissolved organic carbon 
(DOC); McLeod et al., 2011), as well as to physical 
variables such as dissolved oxygen, hydroperiod, 
temperature, salinity, electrical conductivity and pH 
(Alongi, 2014).

While most research on RS has been carried out 
in agroecosystems and forests, and many ecosystems 
have been poorly represented in Mexico some 
commonalities emerge across the available studies. For 
example, in most of the ecosystem presented in this 
manuscript RS could be coupled with soil temperature, 
as long as moisture is not a limiting factor. However, 
since most of the studies of RS in Mexico had been 
based in low frequency measurements, we cannot 
know which could be the threshold of soil moisture 
to become a limiting factor. Related to the latter, Kim 
et al. (2012) suggested the designs of manipulative 
experiments that could enhance our knowledge about 
the interaction of soil rewetting. Furthermore, also Kim 

et al. (2012) highlighted that most of the studies that 
explores the effect of soil moisture on RS are carried 
out on small spatial scales, and that is critical to scale 
up these interactions at ecosystem level.

Mexico is a country with high rates of land 
use change, mainly by deforestation and livestock 
grassing. Thus, intensive agricultural practices could 
enhance RS and deplete SOC pools, while conservation 
agricultural practices could decrease RS and increase 
the SOC. However, despite that most of the studies of 
RS in Mexico had been carried out in agroecosystems, 
few of them had compared the trade-off of converting 
natural to managed ecosystems. 

FUTURE DIRECTIONS OF SOIL 
RESPIRATION RESEARCH IN MEXICO

The Mexican Carbon Program (Programa 
Mexicano del Carbono; PMC) has developed databases 
and improved techniques and methodologies related to 
SOC stocks (Fuentes-Ponce et al., 2012), however, 
these stocks result from different processes, both 
aboveground (e.g., photosynthesis) and belowground 
(e.g., decomposition) that are not well described 
in Mexican ecosystems. For example, although in 
Mexico exists long-term observations of above-ground 
production and below-ground decomposition (e.g., 
Anaya et al., 2012), high-frequency measurements 
(e.g., every 30-60 min) are needed to understand short-
term processes on an hourly-to-daily basis (Carbone 
and Vargas, 2008). 

Most of the studies of C exchange between the 
ecosystems and the atmosphere in Mexico had been 
originated from individual efforts (Vargas et al., 2013), 
and it is reflected in the RS research in Mexico: few 
sites with various publications or many sites with one 
publication. Furthermore, most of the studies presented 
in this review do not meet the criteria to be included 
in global databases, being only the studies of Campos 
(2006) and Vargas and Allen (2008c) included on the 
Global Database of Soil Respiration Data (V 3.0, Bond-
Lamberty and Thomson, 2014). This situation reflects 
that most of the studies of RS in Mexico had been 
conducted on short-term scales (e.g., days, weeks, and 
season), making a poor representation of the country in 
continental-to-global synthesis. 

For these reasons, is preponderant to adopt 
knowledge from global experiences and develop 
expertise across the country to acquire long-term RS data 

	
  
Figure 3. Seasonal variation of RS in a subtropical shrubland of 
Sonora. Estimates of RS were conducted with the gradient method 
during the rainy season of 2012 (Robles-Zazueta et al., 2014).
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and fulf ill national needs to study the C cycle in Mexico. 
For example, methodologies should incorporate long-
term high-and-low frequency measurement protocols, 
with criteria to study the spatial heterogeneity and a 
strategy to integrate high frequency measurements. 
Furthermore, it should be a priority for Mexican C cycle 
scientists to develop technologies that reduce costs to 
transfer these technologies from developed countries 
(i.e., Cueva-Rodríguez et al., 2012). Meanwhile, we 
need to develop a strategic plan to advance on the RS 
research in Mexico, as well as collaborative research 
groups. 

It is noteworthy that none of the peer-reviewed 
studies of RS in Mexico has been carried out in a Mexican 
Long-Term Ecological-Research site (Mex‑LTER). 
Incorporating long-term measurements in Mex-
LTER sites would offer a great variety of contrasting 
ecosystems with a natural altitudinal gradient, as well 
as an integrative framework between ecologists and 
social scientists (Maass et al., 2010). Thus, long-term 
RS studies in Mex-LTER sites could provide baseline 
information to identify the responses from ecosystems 
after low-but-constant or fast-and-rare disturbances 
(Turner et al., 2003). However, little has been done 
in Mexico about how disturbances affects functional 
processes in ecosystems (Calderon-Aguilera et al., 
2012). For example, tropical cyclones and hurricanes 
are fast-and-rare natural disturbances that have a strong 
influence on terrestrial vegetation across Mexico 
(Farfán et al., 2014). Vargas (2012a) highlighted the 
importance of high-frequency measurements in a fast-
and-rare disturbance, documenting the legacies of a 
hurricane on RS in the Yucatan Peninsula. However, 
if Vargas (2012a) had had only low-frequency 
measurements we would only know the status of the 
ecosystem before-and-after the hurricane, leading only 
to infer what happened during the hurricane.

MexFlux sites (Vargas et al., 2013) also offer 
an opportunity to carry out RS measurements across 
Mexican ecosystems. Since RS estimates at the 
represented ecosystems would be accompanied by 
estimates the net ecosystem exchange of matter (e.g., 
CO2, CH4) and energy (e.g., H2O) between the ecosystem 
and the atmosphere and combined efforts will allow 
more ref ined estimates of ecosystem fluxes by empirical 
models (e.g., Reichstein et al., 2005; Lasslop et al., 
2010). Flux partitioning of different C fluxes within 
the ecosystem had been commonly compared with RS 
measurements as a proxy of ecosystem respiration. 

Moreover, data of RS in conjunction with net ecosystem 
exchange (NEE) measurements to estimate ecosystem 
respiration could provide insights for partitioning 
of ecosystem respiration on its, heterotrophic and 
autotrophic components, which reminds as a central 
question in C cycle research.

Thus, the future directions on RS research in Mexico 
should be:

a) Develop a base-line understanding of the 
biophysical controls of RS across different ecosystems 
in Mexico, including the responses when a land use 
change occurs,

b) establish long-term (>5 years) observatory 
networks to measure RS across different ecosystems 
and management schemes, 

c) within the latter, establish manipulative experiments 
to obtain mechanistic knowledge of how different 
scenarios (e.g., increasing temperature or changing 
timing and magnitude of precipitation) could affect RS 
(Norby and Luo, 2004),

d) when an array of long-term measurements has been 
established, large-scale modelling of RS using satellite 
data could be carried out (i.e., Wu et al., 2014),

e) develop a Mexican database of RS records, with 
a quality assurance and quality control (QA/QC) 
protocols (Carbone and Vargas, 2008),

f) integrate aboveground phenological measurements 
and net fluxes (e.g., phenocams, Richardson et al., 
2007; Vargas et al., 2013),

g) integrate belowground phenological measurements 
(e.g., minirhizotrons, (Hasselquist et al., 2009),

h) integrate emerging disciplines to explain patterns 
and mechanisms (e.g., ecological genomics, Escalante 
et al., 2014),

i) isolate autotrophic and heterotrophic respiration 
from total RS (Hanson et al., 2000),

j) integrate other greenhouse gases related to RS 
measurements (e.g., CH4, NO, NO2),

k) continuous interaction of universities,  research 
centers, and government agencies, as well as with other 
networks (e.g., MexFlux, Mex-LTER).

Coupled with the lack of knowledge of RS in 
Mexican ecosystems, predicted and actual temperature 
changes across the country (Diffenbaugh et al., 2008; 
Tejeda-Martínez et al., 2008; Pavia et al., 2009; 
García-Cueto et al., 2010), as well as changes in 
precipitation patterns (Arriaga-Ramírez and Cavazos, 
2010; Pérez-Morga et al., 2013) with less frequent but 
more intense precipitation events (Cavazos, 2012), 
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longer and drier dry seasons, and increasing water 
stress across the country (Fuentes-Franco et al., 2015), 
urges the Mexican scientif ic community to increase its 
interest and efforts in studying ecosystem C fluxes. We 
believe that strong synergies could become fruitful if 
interdisciplinary research in this f ield is carried out. 
Concluding, this review should not be considered as 
a baseline of the knowledge on RS in Mexico, but it 
should be re-evaluated on the middle (e.g., 5 years) and 
long (e.g., 10 years) term to know what progresses had 
been made.
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