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RESUMEN

La información espectral multi-angular (visión de 
un píxel desde diferentes ángulos de visión y con ángulos 
de iluminación solar diferentes) obtenida de sensores 
remotos tiene potencial para una discriminación 
adecuada de clases de coberturas del suelo. De acuerdo 
con varios esfuerzos realizados para poder analizar la 
capacidad de discriminación de las clases de cobertura 
del suelo, se introduce un marco teórico-conceptual 
para el análisis de la información espectral, angular 
y temporal (tamaño de píxel fijo). En este trabajo se 
explora el uso del sensor POLDER-1. La base de datos 
fue analizada ajustando un modelo de la función de 
distribución bidireccional de las reflectancias (BRDF) 
en las bandas espectrales disponibles, para diferentes 
clases de cobertura del suelo del sistema GLC2000. Los 
resultados experimentales muestran adecuados ajustes 
a nivel de píxeles y datos diarios. Con los parámetros 
ajustados del modelo de la BRDF se analizó el potencial 
de discriminación usando espacios espectrales de 
las bandas de la región del rojo e infrarrojo cercano, 
utilizando diferentes resoluciones temporales y 
espaciales (agrupación de píxeles). Los resultados 
mostraron alta confusión (traslapes de posición en 
espacios espectrales), detectándose limitaciones de 
dichos enfoques para el caso de confusiones debidas a 
mezclas de clases o causadas por la dinámica temporal 
de las mismas. Al final se define un esquema para 
aproximar la clasificación de la vegetación al acoplar 
la información disponible en los sensores ópticos y las 
clases que pueden ser discriminadas.

Palabras clave: BRDF; MUPB; GLC2000; reflectancias 
normalizadas; parámetro g y G; discriminación.

SUMMARY

Multi-angular spectral information (vision of a 
pixel from different viewing angles and different solar 
illumination angles) obtained from remote sensing has 
the potential to discriminate adequately land cover 
classes. According to several efforts to analyze the 
capacity of discrimination of land cover classes, a 
conceptual theoretical framework for the analysis of 
the spectral, angular and temporal information (fixed 
pixel size) is introduced. In this paper the use of the 
POLDER-1 sensor is explored. The database was 
analyzed by fitting a model function of bidirectional 
reflectance distribution (BRDF) over bandwidths 
available for different classes of land cover GLC2000 
system. Experimental results show appropriate 
adjustments on pixel-level daily data. With the set 
parameters of the BRDF model the potential for 
discrimination using spectral band spaces, red and 
near infrared bands, with different temporal and spatial 
resolution (pixel group) were analyzed. The results 
were highly confusing (position overlaps in spectral 
spaces), pointing to limitations of such approaches 
because of confusion caused by mixtures of classes 
or their temporal dynamics. At the end, a scheme is 
defined to approximate the vegetation classification by 
coupling the information available on optical sensors 
and classes that can be discriminated.

Index words: BRDF; BUPM; GLC2000; normalized 
reflectances; g and G parameter; discrimination. 

INTRODUCCIÓN

La clasificación de las coberturas del suelo o 
biomas a escalas regionales o globales ha sido uno 
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de los objetivos de la tecnología de sensores remotos 
a bordo de plataformas espaciales. La información 
de dichos sensores se utiliza para analizar patrones 
que permiten discriminar clases de vegetación. Los 
patrones que pueden usarse son los espectrales, 
polarización de ondas electromagnéticas, temporales, 
espaciales y multi-angulares (Diner et al., 1999; Zhang 
et al., 2002a, b).

Uno de los sensores que ha sido empleado para 
clasificar la vegetación es el AVHRR (Advanced Very 
High Resolution Radiometer), con resolución espacial 
a nadir de 1.1 km, del cual han estado disponibles 
diferentes versiones desde 1978 (NOAA, 2006). 
Actualmente, el sensor MODIS (MODerate resolution 
Imaging Spectroradiometer) con resolución a nadir de 
250, 500 y 1000 m, en operación desde 2000, es usado 
intensivamente en el mapeo de la vegetación a escalas 
locales y globales (Hu et al., 2007). Ambos sensores 
son de barrido ancho, por lo que los píxeles en una 
escena son vistos con diferentes ángulos cenitales de 
visión e iluminación solar, lo que genera un problema 
de geometría sol-sensor. La información multi-
angular asociada a la vegetación, que conforma dicha 
geometría, ha sido la base para el desarrollo de sensores 
operacionales, como el POLDER (POLarization and 
Directionality of Earth Reflectances), que tiene hasta 
14 ángulos de observación y una resolución espacial 
de alrededor de 7 km; el sensor ATSR-2 (Along-Track 
Scanning Radiometer) con dos ángulos de visión y una 
resolución de 1 km; y, el sensor MISR (Multi-angle 
Imaging Spectro Radiometer), con 9 ángulos de visión 
y resolución espacial de 275 m a 1.1 km.

Los objetos sobre la superficie terrestre reflejan 
la radiación solar en forma anisotrópica, generando 
firmas espectrales multi-angulares características, 
que pueden usarse para clasificar la vegetación y 
caracterizar sus atributos (Diner et al., 1999; Asner, 
2000). Así, la función de distribución bidireccional 
de la reflectancia o BRDF (Bidirectional Reflectance 
Distribution Function) define los patrones multi-
angulares asociados a los objetos terrestres. En realidad, 
las mediciones experimentales en tierra y a bordo de 
plataformas espaciales lo que observan es la función de 
distribución bi-cónica de la reflectancia (Schaepman-
Strub et al., 2006), aunque es práctica común usar el 
término BRDF para esta situación.

El sensor POLDER-1 a bordo de la plataforma 
ADEOS-1 (Advanced Earth Observing System) 
(Deschamps et al., 1994) ofrece una excelente 

oportunidad de mapear los usos del suelo a escala global. 
POLDER-1 permite obtener hasta 14 mediciones de 
un blanco terrestre, cada una con diferentes ángulos 
de visión. El sensor observa la superficie terrestre con 
ángulos de visión de ± 50° a lo largo de su trayectoria 
orbital y de ± 61° en la dirección perpendicular, 
considerando la curvatura de la superficie terrestre. 
La longitud del área de barrido del sensor es de 
2400  km, con dimensiones de los píxeles a nadir de 
6 Í 7 km (Hautecoeur y Leroy, 1998). POLDER-1 
estuvo operacional por un periodo corto de tiempo y 
la información disponible es una base de datos para un 
periodo de ocho meses, de noviembre de 1996 a junio 
de 1997 (Lacaze, 2006).

La base de datos de POLDER-1 ha sido utilizada 
para el análisis de los patrones de la BRDF para 
diferentes tipos de biomas o clases de cobertura del 
suelo (Hautecoeur y Leroy, 1998; Bicheron y Leroy, 
2000), mostrando escasas diferencias entre sí para la 
separabilidad de clases.

Para el sensor MODIS, Tian et al. (2002) y Zhang 
et al. (2002a) han planteado que los patrones de los 
biomas definidos por Myneni et al. (1997) en función 
de propiedades ópticas y biofísicas radiativamente 
diferentes, pueden diferenciarse en el espacio espectral 
de la banda del rojo (R) e infrarrojo cercano (IRC), 
especialmente para clases con alta pureza (no mezclas) 
y escalas espaciales moderadas (alrededor de 1 km). 
Al incrementarse la resolución espacial (por ejemplo: 
km) o reducirse la pureza, la confusión entre clases se 
incrementa. Dicho efecto espacial (mezclas) se propaga 
a las categorías definidas en la clasificación (Ju et al., 
2005), generando problemas de discriminación. Así, al 
utilizar dos bandas espectrales, potencialmente se puede 
discriminar a la vegetación, aunque al incrementarse el 
número de bandas se puede lograr mejores resultados, 
dentro de límites. Price (1990 y 1992) ha demostrado 
que la información espectral hiperespectral es 
altamente redundante y solo unas cuantas bandas son 
suficientes para caracterizar la vegetación. Barnsley 
et al. (1997) plantearon que para una banda espectral 
el uso de dos ángulos de visión de las reflectancias 
permite obtener adecuadas discriminaciones de las 
clases de vegetación, donde la banda del IRC ofrece 
mejor potencial. Dichos autores plantean que la 
capacidad para discriminar vegetación es función de 
la separabilidad espectral intrínseca de las clases y de 
las diferencias en los patrones angulares. Esto es, si en 
el espacio espectral del R-IRC no se discriminan clases, 
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la información multi-angular tiene poco impacto. No 
obstante lo anterior, Hyman y Barnsley (1997) muestran 
para una escena agrícola simple que el uso de todas 
las bandas multi-espectrales con un ángulo de visión a 
nadir genera una precisión de clasificación similar a la 
obtenida por una banda espectral y diferentes ángulos 
de visión, particularmente si se usan las bandas del 
infrarrojo cercano o medio.

Modelos de la BRDF y Discriminación de la 
Vegetación

En términos operacionales, para modelar la BRDF 
se ha planteado el uso de modelos semi-empíricos 
lineales (MSL) (Wanner et al., 1995), definidos como:

volgeo fkfkkR 210 ++=                                          (1)

donde: R es la reflectancia (cualquier banda), fgeo es el 
kernel (función matemática) asociado a la geometría 
óptica (elementos sombreados e iluminados para una 
geometría de distribución de las plantas), fvol está 
asociado a la contribución volumétrica del follaje de 
las plantas de la escena y los k son parámetros que se 
ajustan estadísticamente a una BRDF dada. El parámetro 
k0 representa las contribuciones isotrópicas de la 
vegetación, independientes de la geometría sol-sensor 
y son función de las propiedades ópticas (reflectancias) 
de las plantas y sus elementos constitutivos (Ross, 
1981).

Mediante la estrategia de uso de los parámetros de 
los MSL en lugar de las reflectancias multi-angulares 
medidas, existe potencial de discriminar la vegetación 
(Chopping, 2000), particularmente cuando se usan 
dos bandas espectrales, generalmente el R e IRC. 
Así, Bacour y Breon (2005) analizaron la variabilidad 
de la BRDF para diferentes biomas a través de los 
parámetros de un MSL (Maignan et al., 2004) tipo 
kernel (Wanner et al., 1995), pero con la inclusión 
de un término asociado al Hot Spot (coincidencia de 
los ángulos cenitales solares y de visión), que hace 
que la curvatura de la BRDF se incremente cerca del 
Hot Spot (HS). Dichos autores mostraron que el uso 
de los patrones de los parámetros, particularmente k0, 
del modelo entre un par de bandas (R e IRC) permite 
discriminar algunos biomas, aunque la confusión 
entre clases se mantiene. Los autores mencionados 

previamente analizaron la base de datos de POLDER-1 
y utilizaron un procesamiento de la misma con efectos 
residuales atmosféricos (aerosoles troposféricos) los 
cuales dificultaron su análisis. Resultados similares, en 
relación al potencial de discriminación de k0 entre el R 
e IRC, fueron discutidos por Anjum y Ghosh (2000).

Al utilizar las líneas de procesamiento de 
POLDER-1 diferentes a las de la base estándar 
previamente mencionada, Leblanc et al. (2005) y 
Chen et al. (2005) ajustaron e invirtieron modelos 
de transferencia radiativa de óptica geométrica para 
analizar las firmas de la BRDF en el HS, con la 
finalidad de discriminar biomas usando sus patrones, 
con resultados alentadores. En tal estrategia de uso 
de los patrones del HS para discriminar clases de 
vegetación, Grant et al. (2004) encontraron que al 
analizar la amplitud del HS, como modelo particular, 
en el espacio del R-IRC usando el sensor POLDER, es 
posible caracterizar a las diferentes clases analizadas.

Por su parte, en un formato de espacios espectrales, 
Zhang et al. (2002a, b) plantearon que la variación 
multi-angular de los biomas (fundamentalmente 
bosques de hoja ancha y aciculares, matorrales, 
y cultivos de hoja ancha y cereales) de acuerdo a 
Myneni et al. (1997) definen patrones específicos que 
permiten separarlos espectral y angularmente; con 
excepción de los biomas cultivos y pastizales, que 
muestran traslapes. Dicha estrategia de caracterización 
de biomas es usada operacionalmente por el sensor 
MODIS. Los citados autores utilizaron espacios 
espectrales (R-IRC, principalmente) y mostraron que 
las clases de vegetación (radiativamente diferentes) 
están diferenciadas en función de su localización 
en el espacio espectral y tres métricas: inclinación o 
pendiente (p), longitud (l) e intercepción (m) de los 
patrones cuasi-lineales en ese espacio (Figura 1a).

El ejemplo de la Figura 1a considera el promedio 
de mediciones multi-angulares en un determinado 
periodo, generalmente menor o igual a un mes, donde 
las variaciones de los biomas no son marcadas. El 
efecto temporal en la localización de los patrones 
lineales de la Figura 1 debe considerarse al discriminar 
biomas, particularmente los asociados a biomas con 
crecimiento marcado o cambio de sus propiedades (por 
ejemplo pastizales, cultivos, bosque caducifolio, etc.). 
Hu et al. (2007) por ejemplo, mostraron cómo varían 
las líneas multi-angulares, mes por mes, para el caso 
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de un bosque de hoja ancha caducifolio. La pendiente 
p de las líneas rectas se muestra en la Figura 1b, 
donde el intercepto m es prácticamente cero en todos 
los meses, donde queda claro que al considerar el tiempo 
en la discriminación de la vegetación, las estrategias 
de usar solo una fecha puede generar confusiones, lo 
que depende de la forma en que los biomas divergen o 
convergen en sus patrones temporales. 

Los análisis mostrados sugieren la necesidad de una 
estrategia de discriminación de clases de la vegetación 
usando en forma conjunta información espectral, multi-
angular y temporal (dejando la parte espacial como 
fija, en un enfoque píxel por píxel o en agrupaciones 
espaciales homogéneas de clases).

En este trabajo se analiza la base de datos de 
POLDER-1, con correcciones atmosféricas completas 
(Lacaze, 2006), asociada a un sistema global de clases 
de uso del suelo, por lo que los efectos de contaminación 
atmosférica y otro tipo de efectos han sido reducidos, 
esperando tener BRDFs más adecuadas.

Para sintetizar el análisis de patrones espectrales 
multi-angulares se ajustó un modelo uni-paramétrico 
de la BRDF (MUPB) desarrollado por Bolaños y Paz 
(2010) para el caso de ángulos cenitales y extendido para 
el caso de geometrías completas de visión-iluminación. 
Los análisis de discriminación se realizaron usando 
en forma conjunta reflectancias, BRDF y patrones 
temporales, planteando los alcances y limitaciones.

MATERIALES Y MÉTODOS

Modelo Uni-Paramétrico de la BRDF

El modelo uni-paramétrico de la BRDF o MUPB 
plantea un esquema de modelación diferente al usado 

actualmente en las aplicaciones operacionales de 
los sensores remotos, ya que considera una simetría 
especial (Hot Spot) que simplifica la modelación de la 
BRDF a un solo parámetro, siendo necesario un solo 
dato, aplicable a nivel de píxel por píxel para el caso de 
una imagen satelital y para cualquier fecha. El MUPB 
fue inicialmente planteado con una simetría diferente 
para las bandas espectrales (Bolaños et al., 2007) y 
después generalizado a una simetría única para todas 
las bandas (Bolaños y Paz, 2010):

χ = 90−θv+θs
Rn = f (R)cos(χ )
χ = a− gRn

f (R) = R, sin efecto de escala
f (R) = ln(R), con efecto de escala                                      (2)

donde: θv es el ángulo cenital de visión, θs es el ángulo 
cenital solar de iluminación, R es la reflectancia de 
cualquier banda espectral, g es el parámetro de la 
BRDF, a = 90°, Rn es reflectancia normalizada, χ 
es una variable de posición angular. La función f(R) 
puede ser dependiente del efecto de escala (cambio 
en las dimensiones de las áreas de visión; típico en 
mediciones de campo y laboratorio o de sensores 
remotos de visión multi-angular o barrido ancho, tal 
como MODIS, AVHRR, MISR, POLDER) o no (típico 
de simulaciones radiativas). En lo general, el uso de 
la función logarítmica en f(R) resulta en adecuados 
ajustes experimentales para ambos casos.

El modelo de la BRDF definido por la ecuación 
(2) puede ser extendido al caso de ángulos acimutales, 
bajo los mismos argumentos (Paz y Medrano, 2015):
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Figura 1. (a) Ejemplo de patrón multi-angular de un bosque de hoja ancha caducifolio y su caracterización; y, (b) variación mensual de la 
pendiente p para un bosque de hoja ancha caducifolio (modificado de Hu et al., 2007).



191PAZ Y MEDRANO.  USO DE  DATOS ESPECTRALES MULTI-ANGULARES DEL SENSOR POLDER-1

dϕ =ϕv−ϕs
Si dϕ ≤180,  dϕ p = dϕ
Si dϕ >180,  dϕ p = 360− dϕ

Si dϕ p ≤ 90,  ς = dϕ p+θs
Si dϕ p > 90,  ς = dϕ p−θs

gn = gcos(ς )
ς = A−G(gn)                                             (3)

donde: ϕv es el ángulo acimutal de visión, ϕs es el 
ángulo acimutal solar de iluminación, G es el parámetro 
de la BRDF y A = 90°.

El sistema de ecuaciones (2) y (3) puede replantearse 
como (a=90, A=90):

f (R) =G 90− χ
90−ς

⎛

⎝
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⎞

⎠
⎟
cos(ξ )
cos(χ )
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥
                                           (4)

que para el caso de una definición generalizada de 
reflectancias normalizadas, queda como:

Rn =G(90− χ )cos(ξ )
Rn = f (R)cos(χ )(90−ξ )                                                  (5)

El MUPB permite parametrizar la BRDF con un 
solo parámetro: g para el caso de solo ángulos cenitales 
(visión a nadir) o G para el caso general. Las constantes 
a y A son iguales a 90°, producto de la simetría 
introducida por las variables de posición χ y ζ.

Patrones espectrales, Angulares y Temporales de la 
Vegetación

Para visualizar los patrones espectrales, angulares 
asociados a las clases de vegetación, la Figura 2 muestra 
simulaciones radiativas asociadas al crecimiento de un 
cultivo agrícola (misma geometría sol-sensor, ángulo 
de visión a nadir) con diferentes propiedades ópticas 
del suelo, bajo el cultivo que sostiene (Paz et al., 2005). 
El tiempo de crecimiento del cultivo está definido en 
los espacios espectrales como cambios en el índice de 
área foliar (IAF) u otra variable biofísica asociada.

En el espacio del R-IRC (Figura 2a), el crecimiento 
del cultivo parte de una línea del suelo (IAF) hasta un 
IAF de 12 (follaje muy denso). El patrón de las líneas 
iso-IAF, mismo IAF y en diferentes tipos de suelo, es 
de alejamiento de la línea del suelo y reducción de las 
longitudes de éstas a medida que el IAF se incrementa, 
hasta el punto donde la banda del R se satura (no 
cambia de valor), representando un medio ópticamente 
denso definido por reflectancias en el infinito o R∞ 
(Ross, 1981), donde los fotones no chocan con el 
suelo (equivalente a un medio con un suelo oscuro u 
ópticamente absorbente). El IRC sigue creciendo hasta 
alcanzar su propio valor de saturación en IRC∞.

Al dejar fijo al suelo, el crecimiento de la vegetación 
se manifiesta a través de curvas iso-suelo (Figura 2a), 
en donde el factor tiempo está implícito en los espacios 
espectrales.

El uso del espacio del R-IRC obedece a que en 
este espacio existe mayor contraste entre bandas para 

Figura 2. Simulaciones radiativas del crecimiento, variación del IAF (índice de área foliar) de un cultivo agrícola. (a) espacio del R 
(rojo)-IRC (infrarrojo cercano) y (b) espacio del A (azul) –R (rojo).
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el sistema suelo-vegetación (Tucker, 1979). Si se usan 
bandas del visible, el contraste es menor y difícil de 
usar para discriminar vegetación. La Figura 2b muestra 
el espacio del azul (A) y R, donde las curvas iso-IAF se 
vuelven lineales.

De las relaciones (2) del MUB, es posible 
estandarizar una geometría sol-sensor para analizar los 
patrones espectrales del crecimiento de la vegetación 
en forma interoperable. Para ello se usan las relaciones 
(a=90 y A=90), derivadas de las relaciones (2):

Rn = 90− χ
g

g = gn
cos(ς )

gn = 90−ς
G                                                                   (6)

donde: Rn es una reflectancia para una geometría 
cenital definida por χ y ζ.

La Figura 3a muestra los patrones espectrales en el 
espacio Rn-IRCn para dϕ = 0, θv = 0 y θs = 30, para 
el caso sin efecto de escala, mismas simulaciones de la 
Figura 1a. Los valores de Rn se multiplicaron por -1 
para mostrarlos en el cuadrante positivo. La Figura 3b 
muestra el espacio g R - g IRC para el mismo caso, 

donde se eliminó la curva iso-suelo asociada al más 
oscuro, para mejorar la visualización. El parámetro 
g define íntegramente las variaciones de diferentes 
geometrías sol-sensor (Figura 1a) en un solo valor, 
lo cual es una forma compacta de analizar el BRDF 
en forma completa (caso de variaciones de ángulos 
cenitales). Se observa de estas figuras, sin efecto de 
escala, que los espacios estandarizados o del BRDF, 
conservan las métricas de separabilidad del crecimiento 
de la vegetación.

Los patrones espectrales de las simulaciones de 
la Figura1a se muestran en las Figuras 3c y d, en este 
caso considerando el efecto de escala (transformación 
logarítmica, para compensar del incremento del tamaño 
del píxel con el ángulo cenital de visión). La Figura 3c 
muestra el espacio Rn-IRCn y la Figura 3d el espacio 
g R – g IRC. 

En las Figuras 3c y d se aprecia que los patrones 
son similares a los de las Figuras 3a y b, pero con una 
reducción de la separabilidad, la cual es aparente, ya 
que la transformación logarítmica mantiene métricas 
proporcionales.

Como evidencia experimental de campo, la Figura 4 
muestra patrones espectrales y de la BRDF para el caso 
de mediciones de reflectancias de maíz (Bausch, 1993). 
Las Figuras 4a y c muestran los patrones normales del 

Figura 3. Simulaciones radiativas para el caso de efecto de escala (a y b) y sin él (c y d).
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crecimiento de los cultivos en el espacio Rn-IRCn.
En la Figura 4b y d se observa, con o sin efecto de 

escala, que las líneas iso-IAF para valores mayores a 2 
son casi horizontales, donde el valor de g IRC asociado 
define un criterio de clasificación sin efecto del suelo, 
lo cual se presenta en los valores de g R.

Al utilizar el MUPB en experimentos con 
maquetas arbóreas, Cano et al. (2009) mostraron que 
las relaciones g R – g IRC pueden discriminar especies 
arbóreas con diferentes tipos de hojas, dejando fijo el 
suelo y la cobertura aérea de la vegetación. La relación 
entre las relaciones lineales de las g del R-IRC, en 
diferentes suelos, con la cobertura aérea puede ser 
usada para diferenciar patrones de crecimiento de las 
especies arbóreas, para valores donde la cobertura 
no sea muy baja (menor al 20%). Asimismo, dichos 
autores encontraron que el uso del espacio Rn-IRCn 
reduce las confusiones observadas en reflectancias 
provenientes de diferentes geometrías sol-sensor.

Base de Datos Multi-Angulares de POLDER-1 y su 
Proceso

La base de datos de POLDER-1 está documentada 
en Lacaze (2006) y disponible en internet (http://
toyo.mediasfrance.org/?POLDER-1-BRDF-Data-

Base-V-2-00). Dicha base de datos está geolocalizada, 
con remoción de nubes y corrección atmosférica 
completa. Consta de 24 857 BRDFs (concepto general 
para ángulos de visión diferentes, para un periodo de 
un mes) asociados a las bandas espectrales centradas 
(μm) en 443, 565, 670 (R), 765 y 865 (IRC); donde 
las bandas 443, 670 y 865 miden la polarización de la 
radiación incidente. Para cada medición de reflectancias 
existe la información de la geometría sol-sensor, fecha 
de toma y clase de cobertura del suelo.

La información de la base de datos de POLDER-1 
está diferenciada por clases de cobertura del suelo 
de acuerdo con el sistema GLC2000 (Global Land 
Cover 2000) (JRC, 2003), el cual consta de 22 clases 
(Cuadro  1). Los archivos de datos para cada clase 
de cobertura del suelo tienen asociado el índice de 
vegetación de diferencia normalizada NDVI=(IRC-R)/
(IRC+R), que oscila de -0.2 a 1 en intervalos de 0.1, 
como una medida de la cantidad de vegetación en un 
píxel dado.

En los análisis realizados, el MUPB se ajustó a 
nivel diario para cada píxel de la base de datos. El 
ajuste fue realizado considerando los ángulos ζ y χ de 
las mediciones acimutales para estimar el parámetro 
G (caso de efecto de escala). Con G se estimó g 
y Rn (estandarización con dϕ = 0, θv = 0, θs = 40). 

Figura 4. Mediciones en campo para el caso de efecto de escala (a y b) y sin él (c y d).
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El procedimiento numérico consistió en determinar el 
parámetro G (A se estimó en la regresión, para analizar 
el efecto de los ajustes en esta constante) para el caso 
de las reflectancias asociadas a diferentes valores 
acimutales.

Una síntesis de la base de datos de POLDER-1, con 
el número total de días procesados, así como el total de 
valores de reflectancias (misma cantidad para todas las 
bandas) se muestra en el Cuadro 1.

RESULTADOS Y DISCUSIÓN

Los ajustes del MUPB a nivel diario fueron 
realizados considerando dos casos, con P > 0.05: (1) R2 
≥ 0.97 y A: [87, 93] para las reflectancias R765 y R865 
y, (2) R2 ≥ 0.95 y A: [84, 96] para las reflectancias R565 
y R670, incluidas las R765 y R865. En lo general, los 
casos de χ = 90°, ζ = 90° (casos degenerados del MUPB 
para reflectancias no normalizadas), reflectancias con 

errores, |G| > 60 y valores con patrones contrarios de 
Rn (diferente signo entre el medido y el estimado) no se 
consideraron en los análisis. Dichos casos representan 
entre el 5 y 15% para las clases de cobertura del suelo 
de la base de datos. Para los casos (1) y (2), alrededor 
del 90% de la base usada en los ajustes experimentales 
cumplió con las condiciones impuestas.

Espacio Espectral-Angular del R765-R865 y 
R670-R865 usando Promedios Mensuales

Se realizó un primer análisis para considerar una 
agrupación por mes de las variables asociadas de la 
BRDF (Rn estandarizadas a la geometría sol-sensor 
definida y los parámetros G y g del MUPB). Para cada 
clase de cobertura se realizaron regresiones lineales 
para estimar el intercepto (Ad) y pendiente (Bd) de las 
bandas R765 y R865 empleando valores a nivel diario. 
Con los parámetros Ad y Bd a nivel mensual, se realizó 

Clase Descripción No. Días No. Datos

1 Cobertura arbórea, hoja ancha, perenne 15 446 196 752
2 Cobertura arbórea, hoja ancha, caducifolio, cerrado 25 276 323 972
3 Cobertura arbórea, hoja ancha, caducifolio, abierto 17 108 219 317
4 Cobertura arbórea, hoja acicular, perenne 25 710 333 962
5 Cobertura arbórea, hoja acicular, caducifolia 5888 91 996
6 Cobertura arbórea, tipo mixto de hoja 17 938 243 124
7 Cobertura arbórea, regularmente inundado, agua dulce 2241 27 349
8 Cobertura arbórea, regularmente inundado, agua salina (variacióndiaria) 7896 96 332
9 Mosaico: cobertura arbórea / otra vegetación natural 11 780 158 131
10 Cobertura arbórea, quemado 4272 65 604
11 Cobertura arbustiva, cerrado-abierto, perenne (con o sin un estrato arbóreo disperso) 21 117 272 225
12 Cobertura arbustiva, cerrado-abierto, caducifolio (con o sin un estrato arbóreo disperso) 28 486 362 219
13 Cobertura herbácea, cerrado-abierto 27 567 359 340
14 Cobertura herbácea dispersa o arbustiva dispersa 26 351 344 694
15 Cobertura arbustiva regularmente inundada o cobertura herbácea 19 330 254 203
16 Áreas cultivadas y manejadas 29 039 367 610
17 Mosaico: cultivo / cobertura arbórea / otra vegetación natural 15 873 203 116
18 Mosaico: cultivo / cobertura arbustiva o herbácea 22 119 283 877
19 Áreas desnudas 20 090 257 579
20 Cuerpos de agua (natural y artificial) 27 578 366 565
21 Nieve y hielo (natural y artificial) 7579 118 558
22 Superficies artificiales y áreas asociadas 16 136 205 074
Total 394 820 5 151 599

Cuadro 1. Sistema GLC2000 y base de datos de POLDER-1 asociada (escala mundial).
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una regresión lineal para los patrones de todos los 
meses y determinar un solo patrón para todos: variable 
R865 = Am + Bm variable R765

La Figura 5 muestra las variaciones diarias a nivel 
mensual de R765n y R865n, donde Ad y Bd varían mes 
a mes, dentro de límites pequeños. En la Figura 6 se 
muestran las relaciones Am y Bm para todas las clases 
de coberturas.

De acuerdo con la Figura 6, las clases 5 (bosque 
acicular caducifolio), 21 (nieve y hielo), 9 (mosaico de 
bosque y otro tipo de vegetación natural) y 4 (bosque 

acicular perenne) son las clases más separables, usando 
el parámetro G y g. El resto de las clases pueden 
separarse por grupos.

Aunque al parecer el uso de las variables asociadas 
a la BRDF en el espacio R765-R865 muestra un 
potencial de discriminación de clases de cobertura, 
al observar los valores de Am de la Figura 6, es claro 
que los mismos están muy cercanos entre sí, por lo que 
son poco útiles. Ello es más evidente en la Figura 7 
donde se muestran los valores de R765n y R865n para 
la clase 1 (bosque de hoja ancha perenne) discutida 

Figura 5. Variación mensual de la relación Ad y Bd para la clase 1 (bosque de hoja ancha, perenne), en el espacio R765n-R865n.
 

	
  

Figura 6. Relación entre los parámetros Am y Bm para todas las clases de coberturas. 
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previamente, donde se observa que dichas bandas 
están altamente correlacionadas (algo similar sucede 
al comparar dos bandas del visible). En el caso de las 
bandas contrastantes del R (R670) e IRC (R865), la 
Figura 7 muestra esta situación para la misma clase 1.

La Figura 8 muestra las variaciones mensuales 
de la clase 1 en el espacio R670n-R865n, donde se 
observan mezclas de vegetación y diferentes estados 
del crecimiento de la misma.

Espacio Espectral-Angular del R670-R865 a Nivel 
de Píxeles y Datos Diarios

Para evitar hipótesis de homogeneidad temporal 
(promedios mensuales) o espacial (agrupaciones de 
píxeles de una clase de cobertura), se analizaron los 
patrones espectrales-angulares (tiempo implícito) a 
nivel diario con píxeles individuales en cada clase de 
cobertura definida. La Figura 9 muestra un ejemplo de 

Figura 7. Patrones espectrales con una geometría sol-sensor estandarizada para los espacios R765n-R865n y R670n-R865n, 
para la clase 1 (bosque de hoja ancha perenne) de cobertura del suelo.
 

	
  

Figura 8. Variación mensual de la relación Ad y Bd para la clase 1 (bosque de hoja ancha perenne), en el espacio R670n-R865n. 
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seis clases (4 = bosque acicular perenne, 13 = cobertura 
herbácea, 16 = cultivos, 10 = bosque quemado, 19 = área 
desnuda y 21 = nieve y hielo), donde la región R670n: 
[1, 2] y R865n: [3, 4] muestran alta confusión, aún con 
clases no asociadas a vegetación (áreas desnudas, nieve 
y hielo). La explicación de estos resultados puede tener 
múltiples factores que no pueden discriminarse.

Para el caso del parámetro g del espacio R670-R865, 
la Figura 10 muestra los patrones de g R – g IRC para las 
mismas clases presentadas en la Figura 9. De acuerdo 
con las Figuras 3 y 4, los patrones límite horizontales 
(vegetación densa) e inclinados (suelo desnudo o clase 
similar) pueden ser usados para discriminar clases. 
Para este análisis la confusión entre clases de cobertura 
prevalece, aunque menos acentuada que en el caso del 
espacio R670n-R865n.

Alcances y Limitaciones de la Discriminación de 
Clases de Cobertura del Suelo Usando Información 
Satelital

Los análisis descritos anteriormente muestran que 
es prácticamente imposible discriminar las clases de 
cobertura asociadas al sistema GLC2000 dada la alta 
confusión en los espacios espectrales, angulares y 
temporales. En apariencia, la confusión es producto 
de mezclas de clases de cobertura, pero también es 
debido a la alta variabilidad temporal (desde suelo 
con poca vegetación hasta vegetación densa). En esta 
perspectiva el sistema de clasificación de las coberturas 
a nivel terrestre no está acoplado con las posibilidades 
reales de la tecnología de los sensores remotos ópticos, 
ya que no se considera el conocimiento de los patrones 

 

	
  

Figura 9. Patrones espectrales-angulares (tiempo implícito) del espacio R670n-R865n para seis clases de cobertura del suelo.
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temporales del crecimiento del follaje y se espera 
que la tecnología satelital resuelva el problema de 
clasificación. En consecuencia, las limitaciones de este 
tipo de enfoques están fuertemente correlacionadas con 
los esquemas de clasificación usados y su armonización 
a las capacidades de discriminación de los sensores 
remotos.

Para discriminar clases de cobertura del suelo 
o biomas, es necesario considerar esquemas de 
clasificación basados en sensores remotos, que 
optimicen la información disponible en los espacios 
espectrales, angulares y temporales, para una 
dimensión dada del píxel. De este modo, al utilizar un 

esquema de discriminación de clases de la vegetación 
a nivel píxel por píxel, se puede plantear una estrategia 
general de clasificación de la vegetación (y clases de 
no vegetación) de acuerdo con patrones temporales 
de parámetros de la BRDF, patrones espectrales-
temporales y condiciones de frontera.

En relación a los patrones temporales de la BRDF, 
como se muestra en la Figura 1b, el análisis de la 
evolución temporal del parámetro g del MUPB permite 
definir si la vegetación es perenne o caducifolia, 
además de clases intermedias en función de umbrales 
que se utilicen (por ejemplo: subcaducifolia y 
subperennifolia). Asimismo, de acuerdo con 

 

 

	
  

Figura 10. Patrones espectrales-angulares (tiempo implícito) del espacio g R670 – g R865 para seis clases de cobertura del suelo.
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la evolución temporal de g es posible discriminar entre 
la vegetación caducifolia o subcaducifolia en relación 
a los cultivos o pastizales cultivados, los cuales tienen 
épocas de siembra generalmente diferentes a las fechas 
de caducidad del follaje de la vegetación natural. Para 
ello se pueden emplear modelos que caractericen la 
evolución temporal del parámetro g de la vegetación 
(Jönsson y Eklundh, 2004).

Al aplicar un esquema como el definido por Paz et al. 
(2009), para el caso de vegetación herbácea, es posible 
analizar las trayectorias temporales (implícitas) de 
las reflectancias (estandarizadas) asociadas a cambios 
en la cantidad de la vegetación de una clase dada. De 
acuerdo con dicho esquema, es posible determinar las 
reflectancias de un tipo de vegetación, aún cuando la 
vegetación no forme un medio denso, permitiendo así 
estimar la distribución espacial y angular del follaje 
y sus propiedades ópticas (albedo foliar), las cuales 
están definidas por las reflectancias en el infinito (Paz 
et al., 2009). En relación a las trayectorias espectrales 
temporales de la vegetación herbácea y arbórea, sus 
patrones son diferentes (Huemmrich, 2001), por lo que 
pueden discriminarse con facilidad.

Con la estimación de las reflectancias en el infinito 
(Paz et al., 2009) es posible analizar dicha condición 
de frontera (superior) de vegetación ópticamente densa 
para discriminar clases de vegetación, considerando las 
posiciones de las reflectancias en el espacio Rn-IRCn. 
Asimismo, una vez conocidos los patrones temporales 
del crecimiento de la vegetación (herbácea o arbórea), 
es posible estimar las reflectancias del suelo (condición 
de frontera inferior), para con ello eliminar este factor 
de confusión.

CONCLUSIONES

- El uso de información multi-angular de sensores 
remotos en plataformas espaciales ha sido argumentado 
como un esquema que mejora las clasificaciones de 
clases de coberturas de uso del suelo o biomas.
- En este trabajo se revisaron los alcances y limitaciones 
de discriminación de clases de cobertura del suelo 
del sistema GL2000, usando un modelo simple de la 
geometría sol-sensor dependiente de un solo parámetro 
y una base de datos de mediciones multi-angulares del 
sensor POLDER-1, en el contexto de un marco teórico-
conceptual del uso de información espectral-angular 
y temporal, dejando fijo el tamaño de los píxeles. 

Los resultados muestran que es prácticamente imposible 
realizar tal tarea, dada la confusión entre clases, la cual 
es debida a mezclas de clases y al desacoplamiento del 
sistema de clasificación terrestre con información que 
se puede obtener de la tecnología de sensores remotos.
- Se recomienda consolidar alternativas de clasificación 
de la vegetación acoplada a información de sensores 
remotos, cuya exploración enriquecerá este tipo de 
contribuciones.
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