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RESUMEN

La informacion espectral multi-angular (vision de
un pixel desde diferentes &ngulos de vision y con angulos
de iluminacion solar diferentes) obtenida de sensores
remotos tiene potencial para una discriminacion
adecuada de clases de coberturas del suelo. De acuerdo
con varios esfuerzos realizados para poder analizar la
capacidad de discriminacion de las clases de cobertura
del suelo, se introduce un marco tedrico-conceptual
para el analisis de la informacion espectral, angular
y temporal (tamafio de pixel fijo). En este trabajo se
explora el uso del sensor POLDER-1. La base de datos
fue analizada ajustando un modelo de la funcién de
distribucion bidireccional de las reflectancias (BRDF)
en las bandas espectrales disponibles, para diferentes
clases de cobertura del suelo del sistema GLC2000. Los
resultados experimentales muestran adecuados ajustes
a nivel de pixeles y datos diarios. Con los parametros
ajustados del modelo de la BRDF se analizo el potencial
de discriminacion usando espacios espectrales de
las bandas de la region del rojo e infrarrojo cercano,
utilizando diferentes resoluciones temporales y
espaciales (agrupacion de pixeles). Los resultados
mostraron alta confusion (traslapes de posicion en
espacios espectrales), detectandose limitaciones de
dichos enfoques para el caso de confusiones debidas a
mezclas de clases o causadas por la dinamica temporal
de las mismas. Al final se define un esquema para
aproximar la clasificacion de la vegetacion al acoplar
la informacion disponible en los sensores Opticos y las
clases que pueden ser discriminadas.
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SUMMARY

Multi-angular spectral information (vision of a
pixel from different viewing angles and different solar
illumination angles) obtained from remote sensing has
the potential to discriminate adequately land cover
classes. According to several efforts to analyze the
capacity of discrimination of land cover classes, a
conceptual theoretical framework for the analysis of
the spectral, angular and temporal information (fixed
pixel size) is introduced. In this paper the use of the
POLDER-1 sensor is explored. The database was
analyzed by fitting a model function of bidirectional
reflectance distribution (BRDF) over bandwidths
available for different classes of land cover GLC2000
system. Experimental results show appropriate
adjustments on pixel-level daily data. With the set
parameters of the BRDF model the potential for
discrimination using spectral band spaces, red and
near infrared bands, with different temporal and spatial
resolution (pixel group) were analyzed. The results
were highly confusing (position overlaps in spectral
spaces), pointing to limitations of such approaches
because of confusion caused by mixtures of classes
or their temporal dynamics. At the end, a scheme is
defined to approximate the vegetation classification by
coupling the information available on optical sensors
and classes that can be discriminated.

Index words: BRDF; BUPM; GLC2000; normalized
reflectances; g and G parameter; discrimination.

INTRODUCCION

La clasificacion de las coberturas del suelo o
biomas a escalas regionales o globales ha sido uno

Recibido: febrero de 2015. Aceptado: noviembre de 2015.
Publicado en Terra Latinoamericana 34: 187-200.



188 TERRA LATINOAMERICANA VOLUMEN 34 NUMERO 2, 2016

de los objetivos de la tecnologia de sensores remotos
a bordo de plataformas espaciales. La informacion
de dichos sensores se utiliza para analizar patrones
que permiten discriminar clases de vegetacion. Los
patrones que pueden usarse son los espectrales,
polarizacion de ondas electromagnéticas, temporales,
espaciales y multi-angulares (Diner ef al., 1999; Zhang
etal.,2002a,b).

Uno de los sensores que ha sido empleado para
clasificar la vegetacion es el AVHRR (Advanced Very
High Resolution Radiometer), con resolucion espacial
a nadir de 1.1 km, del cual han estado disponibles
diferentes versiones desde 1978 (NOAA, 2006).
Actualmente, el sensor MODIS (MODerate resolution
Imaging Spectroradiometer) con resolucion a nadir de
250, 500 y 1000 m, en operacion desde 2000, es usado
intensivamente en el mapeo de la vegetacion a escalas
locales y globales (Hu et al., 2007). Ambos sensores
son de barrido ancho, por lo que los pixeles en una
escena son vistos con diferentes angulos cenitales de
vision e iluminacion solar, lo que genera un problema
de geometria sol-sensor. La informacién multi-
angular asociada a la vegetacion, que conforma dicha
geometria, ha sido la base para el desarrollo de sensores
operacionales, como el POLDER (POLarization and
Directionality of Earth Reflectances), que tiene hasta
14 angulos de observacion y una resolucion espacial
de alrededor de 7 km; el sensor ATSR-2 (4long-Track
Scanning Radiometer) con dos angulos de vision y una
resolucion de 1 km; y, el sensor MISR (Multi-angle
Imaging Spectro Radiometer), con 9 angulos de vision
y resolucion espacial de 275 ma 1.1 km.

Los objetos sobre la superficie terrestre reflejan
la radiacion solar en forma anisotropica, generando
firmas espectrales multi-angulares caracteristicas,
que pueden usarse para clasificar la vegetacion y
caracterizar sus atributos (Diner et al., 1999; Asner,
2000). Asi, la funcion de distribucion bidireccional
de la reflectancia o BRDF (Bidirectional Reflectance
Distribution Function) define los patrones multi-
angulares asociados a los objetos terrestres. En realidad,
las mediciones experimentales en tierra y a bordo de
plataformas espaciales lo que observan es la funcion de
distribucion bi-conica de la reflectancia (Schaepman-
Strub et al., 2006), aunque es practica comun usar el
término BRDF para esta situacion.

El sensor POLDER-1 a bordo de la plataforma
ADEOS-1 (Advanced Earth Observing System)
(Deschamps et al., 1994) ofrece una excelente

oportunidad de mapear los usos del suelo a escala global.
POLDER-1 permite obtener hasta 14 mediciones de
un blanco terrestre, cada una con diferentes angulos
de vision. El sensor observa la superficie terrestre con
angulos de vision de + 50° a lo largo de su trayectoria
orbital y de + 61° en la direccion perpendicular,
considerando la curvatura de la superficie terrestre.
La longitud del area de barrido del sensor es de
2400 km, con dimensiones de los pixeles a nadir de
6 X 7 km (Hautecoeur y Leroy, 1998). POLDER-1
estuvo operacional por un periodo corto de tiempo y
la informacién disponible es una base de datos para un
periodo de ocho meses, de noviembre de 1996 a junio
de 1997 (Lacaze, 20006).

La base de datos de POLDER-1 ha sido utilizada
para el analisis de los patrones de la BRDF para
diferentes tipos de biomas o clases de cobertura del
suelo (Hautecoeur y Leroy, 1998; Bicheron y Leroy,
2000), mostrando escasas diferencias entre si para la
separabilidad de clases.

Para el sensor MODIS, Tian et al. (2002) y Zhang
et al. (2002a) han planteado que los patrones de los
biomas definidos por Myneni et al. (1997) en funcion
de propiedades Opticas y biofisicas radiativamente
diferentes, pueden diferenciarse en el espacio espectral
de la banda del rojo (R) e infrarrojo cercano (IRC),
especialmente para clases con alta pureza (no mezclas)
y escalas espaciales moderadas (alrededor de 1 km).
Al incrementarse la resolucion espacial (por ejemplo:
km) o reducirse la pureza, la confusion entre clases se
incrementa. Dicho efecto espacial (mezclas) se propaga
a las categorias definidas en la clasificacion (Ju et al.,
2005), generando problemas de discriminacion. Asi, al
utilizar dos bandas espectrales, potencialmente se puede
discriminar a la vegetacion, aunque al incrementarse el
numero de bandas se puede lograr mejores resultados,
dentro de limites. Price (1990 y 1992) ha demostrado
que la informacion espectral hiperespectral es
altamente redundante y solo unas cuantas bandas son
suficientes para caracterizar la vegetacion. Barnsley
et al. (1997) plantearon que para una banda espectral
el uso de dos angulos de vision de las reflectancias
permite obtener adecuadas discriminaciones de las
clases de vegetacion, donde la banda del IRC ofrece
mejor potencial. Dichos autores plantean que la
capacidad para discriminar vegetacion es funcion de
la separabilidad espectral intrinseca de las clases y de
las diferencias en los patrones angulares. Esto es, si en
el espacio espectral del R-IRC no se discriminan clases,
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la informacion multi-angular tiene poco impacto. No
obstante lo anterior, Hyman y Barnsley (1997) muestran
para una escena agricola simple que el uso de todas
las bandas multi-espectrales con un angulo de vision a
nadir genera una precision de clasificacion similar a la
obtenida por una banda espectral y diferentes angulos
de vision, particularmente si se usan las bandas del
infrarrojo cercano o medio.

Modelos de la BRDF y Discriminacion de la
Vegetacion

En términos operacionales, para modelar la BRDF
se ha planteado el uso de modelos semi-empiricos
lineales (MSL) (Wanner et al., 1995), definidos como:

R =k0 +k1fgeo +k2fvol (1)

donde: R es la reflectancia (cualquier banda), fgeo es el
kernel (funciéon matematica) asociado a la geometria
optica (elementos sombreados e iluminados para una
geometria de distribucion de las plantas), f estd
asociado a la contribucion volumétrica del follaje de
las plantas de la escena y los k son parametros que se
ajustan estadisticamente auna BRDF dada. El parametro
k, representa las contribuciones isotropicas de la
vegetacion, independientes de la geometria sol-sensor
y son funcién de las propiedades opticas (reflectancias)
de las plantas y sus elementos constitutivos (Ross,
1981).

Mediante la estrategia de uso de los parametros de
los MSL en lugar de las reflectancias multi-angulares
medidas, existe potencial de discriminar la vegetacion
(Chopping, 2000), particularmente cuando se usan
dos bandas espectrales, generalmente el R e IRC.
Asi, Bacour y Breon (2005) analizaron la variabilidad
de la BRDF para diferentes biomas a través de los
parametros de un MSL (Maignan et al., 2004) tipo
kernel (Wanner et al., 1995), pero con la inclusion
de un término asociado al Hot Spot (coincidencia de
los angulos cenitales solares y de vision), que hace
que la curvatura de la BRDF se incremente cerca del
Hot Spot (HS). Dichos autores mostraron que el uso
de los patrones de los parametros, particularmente k,
del modelo entre un par de bandas (R e IRC) permite
discriminar algunos biomas, aunque la confusion
entre clases se mantiene. Los autores mencionados

previamente analizaron la base de datos de POLDER-1
y utilizaron un procesamiento de la misma con efectos
residuales atmosféricos (aerosoles troposféricos) los
cuales dificultaron su analisis. Resultados similares, en
relacion al potencial de discriminacion de k entre el R
e IRC, fueron discutidos por Anjum y Ghosh (2000).

Al utilizar las lineas de procesamiento de
POLDER-1 diferentes a las de la base estandar
previamente mencionada, Leblanc et al. (2005) y
Chen et al. (2005) ajustaron e invirtieron modelos
de transferencia radiativa de Optica geométrica para
analizar las firmas de la BRDF en el HS, con la
finalidad de discriminar biomas usando sus patrones,
con resultados alentadores. En tal estrategia de uso
de los patrones del HS para discriminar clases de
vegetacion, Grant et al. (2004) encontraron que al
analizar la amplitud del HS, como modelo particular,
en el espacio del R-IRC usando el sensor POLDER, es
posible caracterizar a las diferentes clases analizadas.

Por su parte, en un formato de espacios espectrales,
Zhang et al. (2002a, b) plantearon que la variacion
multi-angular de los biomas (fundamentalmente
bosques de hoja ancha y aciculares, matorrales,
y cultivos de hoja ancha y cereales) de acuerdo a
Myneni et al. (1997) definen patrones especificos que
permiten separarlos espectral y angularmente; con
excepcion de los biomas cultivos y pastizales, que
muestran traslapes. Dicha estrategia de caracterizacion
de biomas es usada operacionalmente por el sensor
MODIS. Los citados autores utilizaron espacios
espectrales (R-IRC, principalmente) y mostraron que
las clases de vegetacion (radiativamente diferentes)
estan diferenciadas en funcion de su localizacion
en el espacio espectral y tres métricas: inclinacion o
pendiente (p), longitud (I) e intercepcion (m) de los
patrones cuasi-lineales en ese espacio (Figura 1a).

El ejemplo de la Figura la considera el promedio
de mediciones multi-angulares en un determinado
periodo, generalmente menor o igual a un mes, donde
las variaciones de los biomas no son marcadas. El
efecto temporal en la localizacion de los patrones
lineales de la Figura 1 debe considerarse al discriminar
biomas, particularmente los asociados a biomas con
crecimiento marcado o cambio de sus propiedades (por
ejemplo pastizales, cultivos, bosque caducifolio, etc.).
Hu et al. (2007) por ejemplo, mostraron como varian
las lineas multi-angulares, mes por mes, para el caso
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Figura 1. (a) Ejemplo de patrén multi-angular de un bosque de hoja ancha caducifolio y su caracterizacién; y, (b) variacion mensual de la
pendiente p para un bosque de hoja ancha caducifolio (modificado de Hu et al., 2007).

de un bosque de hoja ancha caducifolio. La pendiente
p de las lineas rectas se muestra en la Figura 1b,
donde el intercepto m es practicamente cero en todos
los meses, donde queda claro que al considerar el tiempo
en la discriminacion de la vegetacion, las estrategias
de usar solo una fecha puede generar confusiones, lo
que depende de la forma en que los biomas divergen o
convergen en sus patrones temporales.

Los analisis mostrados sugieren la necesidad de una
estrategia de discriminacion de clases de la vegetacion
usando en forma conjunta informacion espectral, multi-
angular y temporal (dejando la parte espacial como
fija, en un enfoque pixel por pixel o en agrupaciones
espaciales homogéneas de clases).

En este trabajo se analiza la base de datos de
POLDER-1, con correcciones atmosféricas completas
(Lacaze, 2006), asociada a un sistema global de clases
deuso del suelo, por lo que los efectos de contaminacion
atmosférica y otro tipo de efectos han sido reducidos,
esperando tener BRDFs mas adecuadas.

Para sintetizar el analisis de patrones espectrales
multi-angulares se ajustdé un modelo uni-paramétrico
de la BRDF (MUPB) desarrollado por Bolafios y Paz
(2010) para el caso de angulos cenitales y extendido para
el caso de geometrias completas de vision-iluminacion.
Los andlisis de discriminacion se realizaron usando
en forma conjunta reflectancias, BRDF y patrones
temporales, planteando los alcances y limitaciones.

MATERIALES Y METODOS
Modelo Uni-Paramétrico de la BRDF

El modelo uni-paramétrico de la BRDF o MUPB
plantea un esquema de modelacion diferente al usado

actualmente en las aplicaciones operacionales de
los sensores remotos, ya que considera una simetria
especial (Hot Spot) que simplifica la modelacion de la
BRDF a un solo parametro, siendo necesario un solo
dato, aplicable a nivel de pixel por pixel para el caso de
una imagen satelital y para cualquier fecha. E1l MUPB
fue inicialmente planteado con una simetria diferente
para las bandas espectrales (Bolafios et al., 2007) y
después generalizado a una simetria {inica para todas
las bandas (Bolafos y Paz, 2010):

X=90-0v+0s
Rn = f(R)cos(x)
XxX=a—-gRn

f(R) =R, sin efecto de escala
f(R) =1n(R), con efecto de escala (2)
donde: v es el angulo cenital de vision, Os es el angulo
cenital solar de iluminacion, R es la reflectancia de
cualquier banda espectral, g es el parametro de la
BRDF, a = 90°, Rn es reflectancia normalizada, y
es una variable de posicion angular. La funcion f(R)
puede ser dependiente del efecto de escala (cambio
en las dimensiones de las areas de vision; tipico en
mediciones de campo y laboratorio o de sensores
remotos de visidn multi-angular o barrido ancho, tal
como MODIS, AVHRR, MISR, POLDER) o no (tipico
de simulaciones radiativas). En lo general, el uso de
la funcion logaritmica en f(R) resulta en adecuados
ajustes experimentales para ambos casos.

El modelo de la BRDF definido por la ecuacion
(2) puede ser extendido al caso de angulos acimutales,
bajo los mismos argumentos (Paz y Medrano, 2015):
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dp=q@v-gps
Sidp <180, dpp=dg
Sidp>180, dpp =360-dg

Sidpp=90, ¢ =dpp+0s
Sidpp>90, ¢ =dpp-0s

gn=gcos(¢)
g=A-G(gn) (3)

donde: ¢v es el angulo acimutal de vision, ¢s es el
angulo acimutal solar de iluminacidn, G es el parametro
de la BRDF y A =90°.

Elsistemade ecuaciones (2) y (3) puede replantearse
como (a=90, A=90):

cos(&)
cos(x)

que para el caso de una definicion generalizada de
reflectancias normalizadas, queda como:

|2«
f(R)_G(%—g)

“)

Rn=G(90 - y)cos(&)
Rn = f(R)cos(x)(90-&) (5)

El MUPB permite parametrizar la BRDF con un
solo parametro: g para el caso de solo angulos cenitales
(vision a nadir) o G para el caso general. Las constantes
a y A son iguales a 90°, producto de la simetria
introducida por las variables de posicion y y (.
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Patrones espectrales, Angulares y Temporales de la
Vegetacion

Para visualizar los patrones espectrales, angulares
asociados a las clases de vegetacion, la Figura 2 muestra
simulaciones radiativas asociadas al crecimiento de un
cultivo agricola (misma geometria sol-sensor, angulo
de vision a nadir) con diferentes propiedades Opticas
del suelo, bajo el cultivo que sostiene (Paz et al., 2005).
El tiempo de crecimiento del cultivo esta definido en
los espacios espectrales como cambios en el indice de
area foliar (IAF) u otra variable biofisica asociada.

En el espacio del R-IRC (Figura 2a), el crecimiento
del cultivo parte de una linea del suelo (IAF) hasta un
IAF de 12 (follaje muy denso). El patron de las lineas
iso-IAF, mismo IAF y en diferentes tipos de suelo, es
de alejamiento de la linea del suelo y reduccion de las
longitudes de éstas a medida que el IAF se incrementa,
hasta el punto donde la banda del R se satura (no
cambia de valor), representando un medio Opticamente
denso definido por reflectancias en el infinito o Roo
(Ross, 1981), donde los fotones no chocan con el
suelo (equivalente a un medio con un suelo oscuro u
opticamente absorbente). El IRC sigue creciendo hasta
alcanzar su propio valor de saturacion en IRCoo.

Al dejar fijo al suelo, el crecimiento de la vegetacion
se manifiesta a través de curvas iso-suelo (Figura 2a),
en donde el factor tiempo esta implicito en los espacios
espectrales.

El uso del espacio del R-IRC obedece a que en
este espacio existe mayor contraste entre bandas para
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Figura 2. Simulaciones radiativas del crecimiento, variacién del IAF (indice de drea foliar) de un cultivo agricola. (a) espacio del R

(rojo)-IRC (infrarrojo cercano) y (b) espacio del A (azul) —R (rojo).



192 TERRA LATINOAMERICANA VOLUMEN 34 NUMERO 2, 2016

el sistema suelo-vegetacion (Tucker, 1979). Si se usan
bandas del visible, el contraste es menor y dificil de
usar para discriminar vegetacion. La Figura 2b muestra
el espacio del azul (A) y R, donde las curvas iso-IAF se
vuelven lineales.

De las relaciones (2) del MUB, es posible
estandarizar una geometria sol-sensor para analizar los
patrones espectrales del crecimiento de la vegetacion
en forma interoperable. Para ello se usan las relaciones
(a=90 y A=90), derivadas de las relaciones (2):

_en
7 cos(o)
9N0-¢
G (6)

sn=

donde: Rn es una reflectancia para una geometria
cenital definida por y y C.

La Figura 3a muestra los patrones espectrales en el
espacio Rn-IRCn para dp = 0, Ov = 0 y 0s = 30, para
el caso sin efecto de escala, mismas simulaciones de la
Figura la. Los valores de Rn se multiplicaron por -1
para mostrarlos en el cuadrante positivo. La Figura 3b
muestra el espacio g R - g IRC para el mismo caso,
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donde se elimind la curva iso-suelo asociada al mas
oscuro, para mejorar la visualizacion. El parametro
g define integramente las variaciones de diferentes
geometrias sol-sensor (Figura la) en un solo valor,
lo cual es una forma compacta de analizar el BRDF
en forma completa (caso de variaciones de angulos
cenitales). Se observa de estas figuras, sin efecto de
escala, que los espacios estandarizados o del BRDF,
conservan las métricas de separabilidad del crecimiento
de la vegetacion.

Los patrones espectrales de las simulaciones de
la Figurala se muestran en las Figuras 3¢ y d, en este
caso considerando el efecto de escala (transformacion
logaritmica, para compensar del incremento del tamafio
del pixel con el angulo cenital de vision). La Figura 3¢
muestra el espacio Rn-IRCn y la Figura 3d el espacio
gR—-gIRC.

En las Figuras 3¢ y d se aprecia que los patrones
son similares a los de las Figuras 3a y b, pero con una
reduccion de la separabilidad, la cual es aparente, ya
que la transformacion logaritmica mantiene métricas
proporcionales.

Como evidencia experimental de campo, la Figura 4
muestra patrones espectrales y de la BRDF para el caso
de mediciones de reflectancias de maiz (Bausch, 1993).
Las Figuras 4a y ¢ muestran los patrones normales del
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Figura 3. Simulaciones radiativas para el caso de efecto de escala (a y b) y sin él (c y d).
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Figura 4. Mediciones en campo para el caso de efecto de escala (ay b) y sin él (c y d).

crecimiento de los cultivos en el espacio Rn-IRCn.

En la Figura 4b y d se observa, con o sin efecto de
escala, que las lineas iso-IAF para valores mayores a 2
son casi horizontales, donde el valor de g IRC asociado
define un criterio de clasificacion sin efecto del suelo,
lo cual se presenta en los valores de g R.

Al utilizar el MUPB en experimentos con
maquetas arboreas, Cano et al. (2009) mostraron que
las relaciones g R — g IRC pueden discriminar especies
arboreas con diferentes tipos de hojas, dejando fijo el
suelo y la cobertura aérea de la vegetacion. La relacion
entre las relaciones lineales de las g del R-IRC, en
diferentes suelos, con la cobertura aérea puede ser
usada para diferenciar patrones de crecimiento de las
especies arboreas, para valores donde la cobertura
no sea muy baja (menor al 20%). Asimismo, dichos
autores encontraron que el uso del espacio Rn-IRCn
reduce las confusiones observadas en reflectancias
provenientes de diferentes geometrias sol-sensor.

Base de Datos Multi-Angulares de POLDER-1 y su
Proceso

La base de datos de POLDER-1 esta documentada
en Lacaze (2006) y disponible en internet (http://
toyo.mediasfrance.org/?POLDER-1-BRDF-Data-

Base-V-2-00). Dicha base de datos esta geolocalizada,
con remociéon de nubes y correccion atmosférica
completa. Consta de 24 857 BRDFs (concepto general
para angulos de vision diferentes, para un periodo de
un mes) asociados a las bandas espectrales centradas
(um) en 443, 565, 670 (R), 765 y 865 (IRC); donde
las bandas 443, 670 y 865 miden la polarizacion de la
radiacion incidente. Para cada medicion de reflectancias
existe la informacion de la geometria sol-sensor, fecha
de toma y clase de cobertura del suelo.

La informacion de la base de datos de POLDER-1
estd diferenciada por clases de cobertura del suelo
de acuerdo con el sistema GLC2000 (Global Land
Cover 2000) (JRC, 2003), el cual consta de 22 clases
(Cuadro 1). Los archivos de datos para cada clase
de cobertura del suelo tienen asociado el indice de
vegetacion de diferencia normalizada NDVI=(IRC-R)/
(IRC+R), que oscila de -0.2 a 1 en intervalos de 0.1,
como una medida de la cantidad de vegetacion en un
pixel dado.

En los andlisis realizados, el MUPB se ajusté a
nivel diario para cada pixel de la base de datos. El
ajuste fue realizado considerando los angulos  y y de
las mediciones acimutales para estimar el parametro
G (caso de efecto de escala). Con G se estimd g
y Rn (estandarizacion con d¢ = 0, 6v = 0, 0s = 40).
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El procedimiento numérico consistié en determinar el
parametro G (A se estimo en la regresion, para analizar
el efecto de los ajustes en esta constante) para el caso
de las reflectancias asociadas a diferentes valores
acimutales.

Una sintesis de la base de datos de POLDER-1, con
el niimero total de dias procesados, asi como el total de
valores de reflectancias (misma cantidad para todas las
bandas) se muestra en el Cuadro 1.

RESULTADOS Y DISCUSION

Los ajustes del MUPB a nivel diario fueron
realizados considerando dos casos, con P> 0.05: (1) R?
>0.97 y A: [87, 93] para las reflectancias R765 y R865
y,(2)R*>0.95y A: [84, 96] para las reflectancias R565
y R670, incluidas las R765 y R865. En lo general, los
casos de x =90°, {=90° (casos degenerados del MUPB
para reflectancias no normalizadas), reflectancias con

errores, |G| > 60 y valores con patrones contrarios de
Rn (diferente signo entre el medido y el estimado) no se
consideraron en los analisis. Dichos casos representan
entre el 5y 15% para las clases de cobertura del suelo
de la base de datos. Para los casos (1) y (2), alrededor
del 90% de la base usada en los ajustes experimentales
cumpli6 con las condiciones impuestas.

Espacio Espectral-Angular del R765-R865 vy
R670-R865 usando Promedios Mensuales

Se realizé un primer analisis para considerar una
agrupacion por mes de las variables asociadas de la
BRDF (Rn estandarizadas a la geometria sol-sensor
definida y los parametros G y g del MUPB). Para cada
clase de cobertura se realizaron regresiones lineales
para estimar el intercepto (Ad) y pendiente (Bd) de las
bandas R765 y R865 empleando valores a nivel diario.
Con los parametros Ad y Bd a nivel mensual, se realizo

Cuadro 1. Sistema GLC2000 y base de datos de POLDER-1 asociada (escala mundial).

Clase Descripcion No. Dias No. Datos
1 Cobertura arborea, hoja ancha, perenne 15 446 196 752
2 Cobertura arborea, hoja ancha, caducifolio, cerrado 25276 323972
3 Cobertura arboérea, hoja ancha, caducifolio, abierto 17 108 219 317
4 Cobertura arbodrea, hoja acicular, perenne 25710 333962
5 Cobertura arborea, hoja acicular, caducifolia 5888 91 996
6 Cobertura arborea, tipo mixto de hoja 17 938 243 124
7 Cobertura arborea, regularmente inundado, agua dulce 2241 27 349
8 Cobertura arborea, regularmente inundado, agua salina (variaciondiaria) 7896 96 332
9 Mosaico: cobertura arborea / otra vegetacion natural 11 780 158 131
10 Cobertura arborea, quemado 4272 65 604
11 Cobertura arbustiva, cerrado-abierto, perenne (con o sin un estrato arboreo disperso) 21117 272225
12 Cobertura arbustiva, cerrado-abierto, caducifolio (con o sin un estrato arboreo disperso) 28 486 362219
13 Cobertura herbacea, cerrado-abierto 27 567 359 340
14 Cobertura herbacea dispersa o arbustiva dispersa 26 351 344 694
15 Cobertura arbustiva regularmente inundada o cobertura herbacea 19 330 254203
16 Areas cultivadas y manejadas 29 039 367 610
17 Mosaico: cultivo / cobertura arbdrea / otra vegetacion natural 15 873 203 116
18 Mosaico: cultivo / cobertura arbustiva o herbacea 22119 283 877
19 Areas desnudas 20 090 257 579
20 Cuerpos de agua (natural y artificial) 27578 366 565
21 Nieve y hielo (natural y artificial) 7579 118 558
22 Superficies artificiales y areas asociadas 16 136 205074
Total 394 820 5151599
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una regresion lineal para los patrones de todos los
meses y determinar un solo patron para todos: variable
R865 = Am + Bm variable R765

La Figura 5 muestra las variaciones diarias a nivel
mensual de R765n y R865n, donde Ad y Bd varian mes
a mes, dentro de limites pequefios. En la Figura 6 se
muestran las relaciones Am y Bm para todas las clases
de coberturas.

De acuerdo con la Figura 6, las clases 5 (bosque
acicular caducifolio), 21 (nieve y hielo), 9 (mosaico de
bosque y otro tipo de vegetacion natural) y 4 (bosque

6
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y =0.9404x+ 0.3546
R?=0.9899

R865n
w

y=0.9967x+0.1668
R?=0.9713

0 1 2 3 4 5 6
R765n
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acicular perenne) son las clases mas separables, usando
el parametro G y g. El resto de las clases pueden
separarse por grupos.

Aunque al parecer el uso de las variables asociadas
a la BRDF en el espacio R765-R865 muestra un
potencial de discriminacion de clases de cobertura,
al observar los valores de Am de la Figura 6, es claro
que los mismos estan muy cercanos entre si, por lo que
son poco utiles. Ello es mas evidente en la Figura 7
donde se muestran los valores de R765n y R865n para
la clase 1 (bosque de hoja ancha perenne) discutida

5
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Figura 5. Variacion mensual de la relaciéon Ad y Bd para la clase 1 (bosque de hoja ancha, perenne), en el espacio R765n-R865n.
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Figura 7. Patrones espectrales con una geometria sol-sensor estandarizada para los espacios R765n-R865n y R670n-R865n,
para la clase 1 (bosque de hoja ancha perenne) de cobertura del suelo.

previamente, donde se observa que dichas bandas
estan altamente correlacionadas (algo similar sucede
al comparar dos bandas del visible). En el caso de las
bandas contrastantes del R (R670) e IRC (R865), la
Figura 7 muestra esta situacion para la misma clase 1.

La Figura 8 muestra las variaciones mensuales
de la clase 1 en el espacio R670n-R865n, donde se
observan mezclas de vegetacion y diferentes estados
del crecimiento de la misma.
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Espacio Espectral-Angular del R670-R865 a Nivel
de Pixeles y Datos Diarios

Para evitar hipdtesis de homogeneidad temporal
(promedios mensuales) o espacial (agrupaciones de
pixeles de una clase de cobertura), se analizaron los
patrones espectrales-angulares (tiempo implicito) a
nivel diario con pixeles individuales en cada clase de
cobertura definida. La Figura 9 muestra un ejemplo de
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Figura 8. Variacion mensual de la relacién Ad y Bd para la clase 1 (bosque de hoja ancha perenne), en el espacio R670n-R865n.
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seis clases (4 = bosque acicular perenne, 13 = cobertura
herbacea, 16 =cultivos, 10 =bosque quemado, 19 =area
desnuda y 21 = nieve y hielo), donde la region R670n:
[1, 2] y R865n: [3, 4] muestran alta confusion, atin con
clases no asociadas a vegetacion (areas desnudas, nieve
y hielo). La explicacion de estos resultados puede tener
multiples factores que no pueden discriminarse.

Para el caso del parametro g del espacio R670-R865,
la Figura 10 muestra los patrones de g R — g IRC para las
mismas clases presentadas en la Figura 9. De acuerdo
con las Figuras 3 y 4, los patrones limite horizontales
(vegetacion densa) e inclinados (suelo desnudo o clase
similar) pueden ser usados para discriminar clases.
Para este analisis la confusion entre clases de cobertura
prevalece, aunque menos acentuada que en el caso del
espacio R670n-R865n.

s
23
®
3
"
o
¥ o ® g
g ©o
1 o6 ®0 o
o
0
0 1 2 3 4 5 6
R670n
6
5
4
c
3 3
®
3
2
1
0
0 1 2 3 4 5
R670n
6
5
4
c
wn
F 3
3
2
1
0
0 1 2 3 4 5

R670n

R865n

R865n

197

Alcances y Limitaciones de la Discriminacion de
Clases de Cobertura del Suelo Usando Informacion
Satelital

Los anélisis descritos anteriormente muestran que
es practicamente imposible discriminar las clases de
cobertura asociadas al sistema GLC2000 dada la alta
confusion en los espacios espectrales, angulares y
temporales. En apariencia, la confusion es producto
de mezclas de clases de cobertura, pero también es
debido a la alta variabilidad temporal (desde suelo
con poca vegetacion hasta vegetacion densa). En esta
perspectiva el sistema de clasificacion de las coberturas
a nivel terrestre no esta acoplado con las posibilidades
reales de la tecnologia de los sensores remotos opticos,
ya que no se considera el conocimiento de los patrones

o
o Clase 13 >

o Clase 10 °°
O,

0 1 2 3 4 5 6
R670n

Figura 9. Patrones espectrales-angulares (tiempo implicito) del espacio R670n-R865n para seis clases de cobertura del suelo.
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Figura 10. Patrones espectrales-angulares (tiempo implicito) del espacio g R670 — g R865 para seis clases de cobertura del suelo.

temporales del crecimiento del follaje y se espera
que la tecnologia satelital resuelva el problema de
clasificacion. En consecuencia, las limitaciones de este
tipo de enfoques estan fuertemente correlacionadas con
los esquemas de clasificacion usados y su armonizacion
a las capacidades de discriminacion de los sensores
remotos.

Para discriminar clases de cobertura del suelo
o biomas, es necesario considerar esquemas de
clasificacion basados en sensores remotos, que
optimicen la informacion disponible en los espacios
espectrales, angulares y temporales, para una
dimension dada del pixel. De este modo, al utilizar un

esquema de discriminacion de clases de la vegetacion
a nivel pixel por pixel, se puede plantear una estrategia
general de clasificacion de la vegetacion (y clases de
no vegetacion) de acuerdo con patrones temporales
de pardmetros de la BRDF, patrones espectrales-
temporales y condiciones de frontera.

En relacion a los patrones temporales de la BRDF,
como se muestra en la Figura 1b, el analisis de la
evolucion temporal del parametro g del MUPB permite
definir si la vegetacion es perenne o caducifolia,
ademas de clases intermedias en funcion de umbrales
que se utilicen (por ejemplo: subcaducifolia y

subperennifolia). Asimismo, de acuerdo con
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la evolucion temporal de g es posible discriminar entre
la vegetacion caducifolia o subcaducifolia en relacion
a los cultivos o pastizales cultivados, los cuales tienen
épocas de siembra generalmente diferentes a las fechas
de caducidad del follaje de la vegetacion natural. Para
ello se pueden emplear modelos que caractericen la
evolucion temporal del parametro g de la vegetacion
(Jonsson y Eklundh, 2004).

Alaplicarun esquema como el definido por Paz et al.
(2009), para el caso de vegetacion herbacea, es posible
analizar las trayectorias temporales (implicitas) de
las reflectancias (estandarizadas) asociadas a cambios
en la cantidad de la vegetacion de una clase dada. De
acuerdo con dicho esquema, es posible determinar las
reflectancias de un tipo de vegetacion, ain cuando la
vegetacion no forme un medio denso, permitiendo asi
estimar la distribucion espacial y angular del follaje
y sus propiedades opticas (albedo foliar), las cuales
estan definidas por las reflectancias en el infinito (Paz
et al., 2009). En relacion a las trayectorias espectrales
temporales de la vegetacion herbacea y arbdrea, sus
patrones son diferentes (Huemmrich, 2001), por lo que
pueden discriminarse con facilidad.

Con la estimacion de las reflectancias en el infinito
(Paz et al., 2009) es posible analizar dicha condicion
de frontera (superior) de vegetacion opticamente densa
para discriminar clases de vegetacion, considerando las
posiciones de las reflectancias en el espacio Rn-IRCn.
Asimismo, una vez conocidos los patrones temporales
del crecimiento de la vegetacion (herbacea o arbdrea),
es posible estimar las reflectancias del suelo (condicion
de frontera inferior), para con ello eliminar este factor
de confusion.

CONCLUSIONES

- El uso de informacion multi-angular de sensores
remotos en plataformas espaciales ha sido argumentado
como un esquema que mejora las clasificaciones de
clases de coberturas de uso del suelo o biomas.

- En este trabajo se revisaron los alcances y limitaciones
de discriminacion de clases de cobertura del suelo
del sistema GL2000, usando un modelo simple de la
geometria sol-sensor dependiente de un solo parametro
y una base de datos de mediciones multi-angulares del
sensor POLDER-1, en el contexto de un marco teorico-
conceptual del uso de informacion espectral-angular
y temporal, dejando fijo el tamafio de los pixeles.

Los resultados muestran que es practicamente imposible
realizar tal tarea, dada la confusion entre clases, la cual
es debida a mezclas de clases y al desacoplamiento del
sistema de clasificacion terrestre con informacion que
se puede obtener de la tecnologia de sensores remotos.
- Se recomienda consolidar alternativas de clasificacion
de la vegetacion acoplada a informacion de sensores
remotos, cuya exploracion enriquecera este tipo de
contribuciones.
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