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RESUMEN

Actualmente existen publicaciones donde se 
abordan múltiples y diversos índices de vegetación 
(IV), sin embargo, la evidencia teórica y experimental 
manif iesta problemas en su diseño y aplicación. En 
este trabajo se analizan sesenta IV, usando modelos 
radiativos de interacciones de orden uno y dos. Los 
IV analizados se desarrollan en un formato general 
asociado a los patrones de las curvas espectrales iso-
IAF (igual índice de área foliar); tanto a nivel estático 
como dinámico. En el caso dinámico, se demuestra 
que utilizando patrones teórico-experimentales, solo 
uno de los IV analizados reproduce la estructura 
matemática-experimental espectral del crecimiento de 
la vegetación. Al f inal se presentan varios ejercicios 
de diseño de IV para el caso de interacciones de orden 
uno e interacciones mixtas de orden uno y dos, usando 
el marco analítico directo desarrollado. Se concluye 
que solo un IV cumple con los requerimientos teórico-
experimentales, aunque solo para la etapa vegetativa-
reproductiva, hasta el IAF máximo.

Palabras clave: análisis de patrones, curvas iso-IAF, 
espacios espectrales, sensores remotos. 

SUMMARY

Currently, multiple and diverse vegetation 
indices (VI) are published. However, theoretical and 
experimental evidence indicates that problems exist in 
their design and application. In this paper, sixty indices 
were analyzed using radiative models of interactions 
of order one and two. The VI analyzed were converted 
into a general format associated with the patterns of 
the spectral curves isoLAI (equal leaf area index), 
at the static and dynamic levels. In the dynamic case, 

using spectral theoretical and experimental patterns or 
structures, it was shown that only one IV reproduced 
the pattern formulated. At the end, several exercises 
are presented for designing IV in the case of order one 
interactions and mixed order (one and two), using the 
analytic framework developed. As a conclusion, only 
one of the IV satisf ies the theoretical and empirical 
requirements, but only for the vegetative-reproductive 
stage and up to maximum LAI.

Index words: patterns analysis, iso-LAI curves, 
spectral spaces, remote sensing.

INTRODUCCIÓN

El uso de la tecnología de los sensores remotos a 
bordo de plataformas espaciales ha tenido gran auge 
durante varias décadas, principalmente por la facilidad 
de acceso a software de procesos de imágenes satelitales 
de bajo costo o gratuitas. No obstante, aún se presenta 
el reto de diseñar aplicaciones con sustento teórico - 
empírico que permitan avances en la estimación de 
variables biofísicas en forma sólida y conf iable.

Los resultados obtenidos del uso de los datos 
provenientes de sensores remotos se explican, en buena 
parte, de los patrones espectrales de la reflectancia del 
follaje de la vegetación, la cual obedece a principios 
biofísicos y bioquímicos (Ross, 1981; Goel, 1988; 
Myneni et al., 1989; Jacquemoud and Baret, 1990; 
Myneni and Ross, 1991).

Una estrategia de análisis de los datos obtenidos 
por sensores remotos, es mediante modelos biofísicos 
de la transferencia de la radiación en el follaje de la 
vegetación (Ross, 1981; Goel, 1988; Myneni et al., 
1989). Aunque se han realizado grandes esfuerzos 
de modelación y de inversión (dados los resultados 
obtenidos bajo las condiciones iniciales del modelo) 
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de éstos para obtener parámetros biofísicos de la 
vegetación, los resultados obtenidos han sido limitados 
(Jacquemoud et al., 1995 y 2000; Weiss et al., 2000); 
independientemente del tiempo y costos de computación 
requeridos, lo cual hace esta estrategia poco práctica 
para aplicaciones en tiempo “casi real” (1-5 días). El 
problema fundamental de la inversión de modelos 
radiativos biofísicos es que son tareas matemáticamente 
indeterminadas; esto es, generalmente usando un par de 
datos (rojo o R e infrarrojo cercano o IRC), es necesario 
estimar la distribución espacial y angular de los 
f itoelementos (hojas principalmente) del follaje y sus 
propiedades ópticas. Para caracterizar esta información 
generalmente es necesario al menos ocho datos: 
reflectancia y transmitancia de las hojas; reflectancia 
del suelo; media y varianza de la distribución angular 
de las hojas y factor de agrupamiento espacial de 
éstas; esto sin considerar información de la fuente de 
iluminación (radiación difusa y directa) y la geometría 
sensor – iluminación. Es matemáticamente claro que 
obtener información de más de once variables con 
dos datos, es algo que implica soluciones múltiples 
del problema, donde cualquiera de ellas puede ser la 
correcta. Aún en el caso de contar con información 
multi o hiper-espectral (más de once bandas), el 
problema de indeterminación permanece por la alta 
correlación entre las bandas espectrales (Price, 1990 y 
1992a).

De la problemática asociada a la inversión de 
modelos biofísicos, un camino ampliamente utilizado 
en las aplicaciones de los sensores remotos es el uso 
de índices espectrales de la vegetación o IV. Los IV 
basados en sensores remotos explotan el alto contraste 
entre la banda del R y del IRC (Tucker, 1979), para 
caracterizar y diferenciar la vegetación de otros objetos 
terrestres. En la actualidad hay un gran número de IV 
publicados en la literatura, que han sido propuestos 
bajo diferentes argumentos y que aducen criterios 
de optimización para los efectos del suelo (fondo 
de la vegetación), atmósfera o geometría sol-sensor 
(Chehbouni et al., 1994; Liu y Huete, 1995; Verstraete 
y Pinty; 1996; Gao et al., 2002).

En este trabajo se analiza la estructura o patrones 
matemáticos asociados a IV reportados en diferentes 
publicaciones, utilizando como referencia el marco 
teórico general desarrollado por Paz et al. (2014). Para 
esta tarea, los IV se han reformulado en relación con 
las curvas iso-IAF, de tal manera que resulten claras las 
hipótesis implicadas por los IV, para analizar su validez 

desde el punto de vista de transferencia radiativa. 
El  planteamiento de este trabajo se fundamenta en 
términos de ef icacia (hacer lo correcto) y ef iciencia 
(hacerlo correctamente) en el diseño de IV; es decir, 
un IV debe cumplir los requerimientos teóricos y 
experimentales para que sea sólido y conf iable. 
Aunque es posible generar muchos IV bajo diferentes 
planteamientos y obtener correlaciones estadísticas 
signif icativas con variables biofísicas, desde la 
referencia teórica y experimental, solo aquellos IV que 
se ajusten a los patrones observados serán viables para 
su uso generalizado, más allá del conjunto de datos 
que se utilice para su diseño y calibración. Def inido el 
patrón que debe cumplir un IV (ef icacia), el segundo 
objetivo es parametrizarlo adecuadamente (ef iciencia) 
en función de conjuntos de datos. Al f inal de este 
trabajo se realizan varios ejercicios de diseño de IV 
para lograr los objetivos planteados.

El contexto para el análisis de los IV discutidos 
es su aplicación en áreas relativamente grandes (por 
ejemplo: zonas de riego), donde las propiedades ópticas 
de los suelos siguen una “línea del suelo”. Un análisis 
a escala de pixel por pixel esta fuera del alcance de este 
trabajo.

La discusión siguiente está en función de las 
bandas del sensor ETM+ del satélite Landsat 7, como 
referencia: banda azul o A centrada en 480 nm; banda 
verde o V  centrada en 570 nm; banda R centrada 
en 660  nm; banda IRC centrada en 840 nm; banda 
infrarrojo medio 1 o IRM1 centrada en 1650 nm; banda 
infrarrojo medio 2 o IRM2 centrada en 2200 nm.

MATERIALES Y MÉTODOS

Marco Teórico de Referencia

Para analizar los patrones matemáticos asociados a 
los IV publicados en la literatura, es necesario establecer 
un marco teórico de referencia que permita revisar su 
congruencia en relación a la teoría de la transferencia 
radiativa en la vegetación. En la Figura 1 se muestra 
el patrón temporal de crecimiento de un cultivo, en el 
espacio espectral R e IRC, representado por curvas de 
igual IAF (iso-IAF), misma cantidad de vegetación y 
suelos ópticamente diferentes, la cual se generó usando 
seis tipos de suelos (S2, S5, S7, S9, S11 y S12; del 
más oscuro al más claro). Paz et al. (2005) detallan 
las simulaciones radiativas mostradas.

Las reflectancias del suelo debajo de la vegetación 
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generalmente forman una “línea del suelo” (Baret 
et al., 1983), def inida por:

IRCs = as + bsRs	 			      (1)

donde: aS y bS son constantes empíricas.
En la Figura 1 se han ajustado líneas rectas 

(interacciones de primer orden) a los valores iso-IAF de 
la reflectancia de la vegetación, donde las reflectancias 
del suelo (línea del suelo) varían. Para un mismo 
valor de reflectancia del suelo, la curva iso-Suelo (no 
lineal) representa una curva de crecimiento (diferentes 

valores del IAF) de la vegetación. Las curvas iso‑Suelo 
convergen a valores en al ápice de la Figura  1, 
representados por las reflectancias en el inf inito o de 
un medio ópticamente denso para las bandas del R e 
IRC. En este caso, las reflectancias, particularmente 
en la banda R están saturadas (no cambian de valor al 
incrementarse el follaje de la vegetación).

El patrón de la Figura 1 ha sido verif icado 
experimentalmente (Huete et al., 1985; Price, 1992b con 
datos de Huete y Jackson, 1987; Baush, 1993; Gilabert 
et al., 2002; Meza Diaz y Blackburn, 2003; Romero 
et al., 2009; Odi-Lara et al., 2010) y por modelos de 
transferencia radiativa (Richardson y Wiegand; 1991, 
Baret y Guyot, 1991; Qi et al., 1994; Yoshioka et al., 
2000; Gao et al., 2000).

La Figura 2 muestra dos experimentos de campo 
con cultivos contrastantes: maíz (Bausch, 1993) y 
algodón (Huete et al., 1985). En ambos experimentos, 
mediciones a nadir y cultivos sin estrés, se utilizaron 
charolas deslizantes con diferentes suelos debajo de los 
cultivos. En las referencias mencionadas se detallan 
los experimentos discutidos. En el experimento de 
maíz el ángulo cenital solar durante toda la campaña 
de muestreo varió de 17.2º a 24.2º. En el caso del 
experimento de algodón, las variaciones fueron de 
22º a 31.7º. Considerando que las variaciones de la 
geometría sol-sensor fueron mínimas y que ambos 
experimentos muestran una ventana de condiciones de 
iluminación más o menos similares, no se hizo ningún 
intento de estandarizar la geometría sol-sensor de estos 
experimentos.

Las curvas iso-IAF (la línea recta es un caso 
especial) pueden aproximarse usando un modelo de 

Figura 1. Espacio espectral IRC-R para las simulaciones del 
cultivo de maíz. R = rojo; IRC = infrarojo cercano; IAF = 
índice de área foliar.
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transferencia radiativa en la vegetación para medios 
turbios, homogéneos o heterogéneos (Paz et al., 2014). 
En este caso hay varias aproximaciones, dependiendo 
del tipo de interacciones: de primer orden (los fotones 
tocan una vez al suelo del fondo de la vegetación) y de 
segundo orden (los fotones tocan al suelo dos veces), 
etc. El Cuadro 1 ejemplif ica la estructura matemática 
de diferente orden de interacción para las bandas del 
R  e IRC (Paz et al., 2014), donde sv se ref iere a la 
mezcla suelo (s) y vegetación (v).

Las constantes de los modelos presentados en el 
Cuadro 1, los primeros dos casos, están def inidas en 
términos de variables radiativas y biofísicas en Paz 
et al. (2014). El caso de interacciones de segundo orden 
para las bandas del R e IRC, tienen una justif icación 
práctica baja, ya que la relación polinómica es compleja 
y solo contribuye en un porcentaje pequeño (menor al 
1%) al del uso de interacciones de primer orden para 
el R e interacciones de segundo orden para el IRC (Paz 
et al., 2014). El caso de interacciones de primer orden 
para las bandas del R e IRC aproxima bien el patrón 
espectral de las curvas iso-IAF y solo tiene errores 
pequeños (alrededor del 10%) para el caso de suelos 
muy reflectivos (Paz et al., 2014).

Los patrones de las rectas iso-IAF mostrados en la 
Figura 1 y def inidos en el Cuadro 1 son estáticos; es 
decir, representan un punto en la curva de crecimiento 
de la vegetación. Para analizar el ciclo completo del 
crecimiento de la vegetación (etapa vegetativa), Paz 
et  al. (2007) plantearon el espacio paramétrico a0-b0 
(espacio de fase, con el tiempo implícito). La Figura 3 
muestra el caso de interacciones de primer orden para 
el R e IRC, relación lineal, para el caso mostrado en 
la  Figura 1, pero generalizado a suelos muy oscuros 
(Rs = 1%) a muy claros (Rs = 35%), con intervalos del 
IAF de 0.5. La letra s es usada para def inir la condición 
de solo suelo (IAF = 0). 

En la Figura 3b se ilustra una transformación del 
espacio a0-b0, la cual hace lineal los dos segmentos 
del patrón original a0-b0, que fue usada por Paz et al. 
(2007) para el desarrollo del índice espectral NDVIcp. 
La Figura 4 muestra los datos del experimento de maíz 
y algodón de la Figura 2, donde ambos experimentos 
fueron mezclados, mostrando patrones similares a los 
de la Figura 3b.

En términos de la dinámica del crecimiento de la 
vegetación, la relación entre a0 y b0 debe seguir los dos 
patrones (A y B) mostrados en la Figura 3. Si un índice 

Orden de las interacciones radiativas Modelo

Rsv IRCsv

1 1 IRCsv = a0 + b0Rsv
1 2 IRCsv = a0 + b0Rsv + c0Rsv2

2 2 IRCsv2 = k0 + k1Rsv + k2Rsv2 + k3IRCsv + k4IRCsvRsv

Cuadro 1. Curvas espectrales iso-IAF para diferentes aproximaciones.

R = rojo; IRC = infrarojo cercano.

Figura 3. (a) Espacios paramétricos a0-b0; y, (b) a0-1/b0 para el caso de interacciones de primer orden de las 
bandas espectrales del R e IRC. IAF = índice de área foliar; R = rojo; IRC = infrarojo cercano.
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de vegetación solo presenta un patrón, no modela en 
forma completa el crecimiento en la etapa vegetativa y 
reproductiva de la vegetación.

Los modelos descritos en el Cuadro 1 fueron 
ajustados por regresión estadística a los valores de 
las  simulaciones radiativas de la Figura 1. Para los 
casos del Cuadro 1, de interacciones mayor que 
orden uno, se requiere un espacio paramétrico multi-
dimensional. Partiendo del argumento de que si en 
el espacio de los dos primeros parámetros, un IV no 
cumple la relación a0-b0 def inida en forma teórica 
y experimental, entonces el modelo del IV no será 
válido; así, se analizan espacios paramétricos similares 
al caso de la Figura 3, para mostrar en forma gráf ica las 
implicaciones de los IV. 

La Figura 5a presenta el caso del modelo de 
interacciones de primer orden del R e interacciones 

de segundo orden del IRC. En la Figura 5b se incluyó 
el caso de un modelo lineal con interacciones, el cual 
puede considerarse como el caso de primer orden no 
lineal del modelo de interacciones de segundo orden 
(k0 + k1Rsv + k2Rsv2 + k3IRCsv + k4IRCsv + k5IRCsv2 = 
0; k2 = 0, k5 = 0).

El caso de interacciones de segundo orden para las 
bandas del R e IRC esta mostrado en la Figura 6.

Como se discute más adelante en el análisis de 
los IV, es importante revisar dos casos especiales del 
modelo de interacciones de segundo orden para el R 
e IRC: caso donde k1=0, k2=0 y k4 =0; y, caso donde 
k4 = 0 (Figura 7).

De las f iguras asociadas a los modelos teóricos, 
y sus variaciones, mostrados en el Cuadro 1 podemos 
establecer algunos puntos básicos para el análisis de 
los IV:
a) Los patrones matemáticos asociados a los dos primeros 
parámetros de los modelos teóricos de la transferencia 
radiativa analizados tienden a un cambio de pendiente 
(Patrón A → Patrón B) alrededor de un IAF entre 1 y 3, 
def iniendo un requerimiento esencial para el diseño de 
IV que aproximen la etapa vegetativa-reproductiva del 
crecimiento de la vegetación.
b) Los patrones generales de los dos primeros 
parámetros de los modelos teóricos representan un 
primer segmento no lineal (Patrón A), que puede ser 
aproximado en forma razonable por una línea recta; y 
después de la transición del cambio de pendiente de 
la curva general, se presenta un segmento que puede 
acercarse por una línea recta (Patrón B). Esto es más 
fácil de visualizar si hacemos una transformación, no 
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lineal, del segundo parámetro, tal como está mostrado 
en la Figura 3b.
c) En términos generales, partiendo de que los modelos 
teóricos analizados representan el comportamiento 
espectral de la vegetación (en términos teóricos y 
experimentales), deberán cumplirse dos requerimientos 
para el diseño de un IV válido: i) modelar las curvas 
iso-IAF particulares (Figura 1 y Cuadro 1 para patrones 
matemáticos); y ii) modelar los patrones de los 
espacios paramétricos del crecimiento de la vegetación 
(Figura  3  a 7). El primer requerimiento es cumplido 
por un polinomio de n ≥ 1 grado, donde el caso de 
interacciones de primer (n = 1) o segundo orden (n = 2) 
son casos particulares. El segundo requerimiento es 
más difícil de cumplir y debe estructurarse en una 
formulación explicita de los IV (Paz et al., 2007).

Índices Espectrales Actuales del Espacio R-IRC

Siguiendo los argumentos de Paz et al. (2014) en 
relación a los espacios espectrales, en esta sección solo 
se analiza el caso del espacio del R-IRC. Posteriormente, 

los desarrollos son generalizados a otros espacios 
espectrales y al caso de los efectos atmosféricos. 
Independientemente de la formulación original, la 
gran mayoría de los IV que se han publicado pueden 
clasif icarse en función de los modelos def inidos 
en el Cuadro 1. En lo siguiente, los análisis parten 
de considerar a las reflectancias como fracciones. 
Los resultados mostrados en las Figuras 3 a 5 no se 
modif ican, pero a0 y k0 deben dividirse entre 100 para 
convertirlos al formato de fracciones.

IV Asociados a Modelos de Interacciones de Primer 
Orden del R e IRC

En el Cuadro 2 se enlistan los IV analizados en 
este trabajo que implican un modelo radiativo de 
interacciones de primer orden para las bandas del R 
e IRC. En el mismo cuadro se def ine la formulación 
de a0 y b0en función de los IV, así como la relación 
implicada entre estos. 

Para estimar las relaciones para a0, b0 y entre a0 y 
b0, el procedimiento consiste de los siguientes pasos:
i. Desarrollar el IV en términos de R e IRC, para 
establecer el patrón matemático entre éstos. Por 
ejemplo, el índice SAVI (Huete, 1988) def inido por:

SAVI =
IRC - R

IRC + R+ L

⎛
⎝
⎜

⎞
⎠
⎟(1 + L)

			      (2)

puede ser puesto como:

IRC =
SAVI( )L

1+L( )−SAVI
⎡
⎣⎢

⎤
⎦⎥
+
1+L( )+SAVI
1+L( )−SAVI

⎡
⎣⎢

⎤
⎦⎥
R

		      (3)

Figura 6. Espacios paramétricos k0-k1 para interacciones de 
segundo orden para las bandas espectrales del R e IRC. R = 
rojo; IRC = infrarojo cercano; IAF = índice de área foliar.
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Figura 7. Espacios paramétricos k0-k1 para interacciones de segundo orden para el R e IRC: (a) k1 = 0, k2 = 0 y k4 = 0; y, (b) k4 = 0. 
R = rojo; IRC = infrarojo cercano; IAF = índice de área foliar.
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que implica un modelo tipo IRC = a0 + b0R, por lo que 
los parámetros están def inidos en la relación (3).
ii. Si a0 y b0 ó (k0 y k1) están en función del IV, entonces 
es posible establecer la relación entre a0 y b0 (k0 y k1). 
El procedimiento consiste en poner primero el IV en 
función de a0. Para el ejemplo analizado, quedaría 
como:

a0 =
SAVI( )L

1+L( )−SAVI

SAVI =
L−a0
a0 1+l( ) 				        (4)

iii. Finalmente, el IV en función de a0 es sustituido en 
la relación entre b0 y el IV, para generar la relación 
entre a0 y b0. Para el ejemplo analizado, quedaría como:

b0 =
1+L( )+SAVI
1+L( )−SAVI

b0 = 1+ 2
L( )a0 					         (5)

iv. Cuando a0 ó b0 (k0 ó k1) no es función del IV y 
tiene un valor constante, no es posible establecer una 
relación entre a0 y b0. En estos casos a0 ó b0 (k0 ó k1) es 
función del IV [f(IV)].
De acuerdo al Cuadro 2, solo existen cuatro patrones 
generales (patrones A):

constantes 

1

:4Patrón 

:3Patrón 

)(

:2Patrón 

)(

0

:1Patrón 

0
0

00

0

0

0

0

dc,t,s,k,

dac
b

tasb

kb

IVfa

IVfb

a

+
=

+=

=

=

=

=

				                    (6)

El caso del patrón 1 y 2 de la relación (6) está 
mostrado en la Figura 8 en relación al patrón teórico-
empírico discutido anteriormente. Se observa que el 
patrón 1 es una línea recta vertical en el origen de a0 y el 

patrón 2 es una línea recta horizontal con intersección 
con el eje b0 en el punto k. Así, en la Figura 8 es claro 
que estos dos tipos de patrones asociados a diferentes 
IV (Cuadro 2) son malas aproximaciones al patrón 
teórico-experimental.

Todos los índices asociados al patrón 1 pueden ser 
hechos equivalentes entre sí, al igualar las expresiones 
de b0, ya que a0 = 0 para todos ellos.

En el caso del patrón 2, los índices PV1 e IVIS 
generan los mismos valores para a0, por lo que ambos 
índices son similares. Esto puede ser visualizado al 
poner el índice IVIS en forma explícita para R e IRC, 
sustituyendo dIRC por su valor. Aunque ambos índices 
fueron diseñados con diferentes argumentos, los 
resultados obtenidos son similares.

En el caso del patrón 3 de la relación (6), al describir 
en forma explícita la relación entre a0 y b0, podemos 
encontrar varias situaciones de interés:
∙ Los índices SAVI2 y PPVI son similares (misma 
relación entre a0 y b0) aunque fueron formulados con 
diferentes metodologías.
∙ El índice GESAVI es equivalente al TSAVI2 al utilizar 
Z = bsX-as.
∙ En lo general, todos los índices asociados al patrón 
lineal a0-b0 pueden ser hechos equivalentes entre sí por 
transformaciones lineales.
∙ El mejor índice asociado al patrón 3 es el que cuyo 
origen (intersección con el eje b0) pasa por el punto de 
la línea del suelo (as, bs) y tiene una pendiente similar 
a la del patrón teórico – experimental, tal como se 
ejemplif ica en la Figura 8.

Figura 8. Patrones entre a0-b0 asociados al caso a0 = 0 y b0 = 
f(IV) y a0 = f(IV) y b0 = k, donde k es una constante.
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Cuadro 2. Índices espectrales de la vegetación para interacciones orden uno para el R e IRC.
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Cuadro 2. Índices espectrales de la vegetación para interacciones orden uno para el R e IRC (continuación).
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En el caso del patrón 4, solo el MSAVI2 y NDVIcp 
tienen un patrón no-lineal correcto (ver Figura 3b 
y 4). Es sorprendente que el MSAVI2, generado bajo 
argumentos diferentes del NDVIcp, concuerde con 
este último. En el caso del NDVIcp, las constantes 
utilizadas son c = 1 y d = -2.2 (Paz et al., 2007). No 
obstante lo anterior, el NDVIcp fue propuesto para 
modelar explícitamente solo la fase exponencial (y el 
inicio de su transición a un cambio de fase) de la etapa 
vegetativa del crecimiento de la vegetación, dejando 
en claro que su uso fuera de esta fase no es adecuado. 
Adicionalmente, el NDVIcp fue diseñado para usar un 
valor de la constante c en función de las constantes de 
la línea del suelo (el valor de c = 1 corresponde a la 
hipótesis explicita de suponer aS = 0 y bS = 1; cuando no 
se conocen estos valores) (Paz et al., 2007).

La discusión presentada permite analizar diferentes 
IV en un formato genérico de análisis, permitiendo 
detectar índices que son similares.

En el Cuadro 3 están los IV asociados con el caso 
de primer orden no lineal del modelo de interacciones 
de segundo orden.

IV Asociados a Modelos de Interacciones de Primer 
Orden del R e Interacciones de Segundo Orden del 
IRC

Aunque el caso de los modelos de interacciones 
de primer orden de la banda del R e interacciones 
de segundo orden de la banda del IRC son los que 
mejor aproximan el comportamiento espectral de 

la  vegetación (caso de incluir suelos muy reflectivos 
como en desierto), los autores no pudieron encontrar 
ningún IV asociado a este modelo.

IV Asociados a Modelos de Interacciones de 
Segundo Orden del R e IRC

El Cuadro 4 muestra los IV asociados con el modelo 
de interacciones de segundo orden para las bandas del 
R e IRC. El formato general usado en el Cuadro 4 es 
para las constantes del polinomio del Cuadro 1, para el 
modelo en cuestión.

El Cuadro 5 presenta la relación k0-k1 asociada 
al Cuadro 4. Como ya se comentó, esta relación es 
suf iciente para visualizar las hipótesis implicadas en 
los IV de interacciones de segundo orden. 

Dos IV analizados y no presentados en los Cuadros 
4 y 5 son el MSR (Chen, 1996) y el MSAVI1 (Qi et al., 
1994). El índice MSR tiene una estructura matemática 
def inida por:

04
12

3
11

2
741

=+

++++

RsvkIRCsvRsvk

IRCsvRsvkIRCsvRsvkIRCsvkRsvk 3

	                  (7)

El índice MSAV1 tiene una estructura matemática 
def inida por
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Cuadro 3. Índices espectrales de la vegetación para el caso de primer orden no lineal del modelo de interacciones de segundo orden.
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Cuadro 4. Índices espectrales de la vegetación para interacciones orden dos para el R e IRC.

Índice Expresión k 0 k 1 k 2 k 3 k 4 Autores
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Patrones de los IV Asociados a Modelos de 
Interacciones de Primer Orden del R e IRC

En la Figura 9 se representan diferentes patrones 
asociados con los IV analizados en los Cuadros 2 y 3; 
éstos están clasif icados del peor (A1) al mejor (A7), de 
acuerdo a la Figura 3a y 3b.

En el Cuadro 6 se enlistan los índices de vegetación 
de los Cuadros 2 y 3, mostrando en forma resumida 
el tipo de variación, y su signo, para los parámetros 
del modelo radiativo, de primer orden y con el caso 
de primer orden no lineal del modelo de interacciones 
de segundo orden, así como el tipo de patrón 
correspondiente a cada IV.

En los patrones de la Figura 6 no se consideraron 
las constantes asociadas a cada patrón, solo su formato 
general. El punto central de discusión es que ningún 
IV de los analizados modela adecuadamente el patrón 
espectral asociado a las curvas espectrales iso-IAF 
para la etapa vegetativa - reproductiva completa del 
crecimiento de la vegetación, la cual requiere de dos 
patrones (A y B en la Figura 3) con signos contrarios.

El caso del patrón A6 (lineal con origen diferente de 
cero) aproxima en algunos índices el patrón no‑lineal, 
Figura 3a y Figura 8 para valores de IAF < 2. 

Aunque en apariencia complejos, los índices MSR 
y MSAVI1 tienen las mismas hipótesis intrínsecas que 
los analizados anteriormente, por lo que su complejidad 
no aporta nuevo conocimiento. En general, una 
estructura matemática, curva iso-IAF, tipo polinómica 
mayor de segundo grado, con o sin interacciones, solo 
tiene benef icios muy marginales en la modelación de 
las reflectancias.

RESULTADOS

Para poder visualizar en forma gráf ica las hipótesis 
implícitas de los índices espectrales de la vegetación 
analizados en la sección anterior, se usó la representación 
del espacio de los dos primeros parámetros del modelo 
de las curvas espectrales iso-IAF, para compararlos 
contra los patrones teóricos mostrados en las Figuras 3 
a 5, tal como se ejemplif icó en la Figura 8.
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Cuadro 5. Relación k0-k1 para índices espectrales de la vegeta-
ción con interacciones orden dos para el R e IRC.

  a0 

b0 

A1 

A3 
A4 

A5 

A6 
   
A2 A7 

Figura 9. Clasificación de patrones asociados con los índices de 
vegetación en el espacio a0-b0.



39PAZ ET AL. ALCANCES Y LIMITACIONES DE LOS ÍNDICES ESPECTRALES DE LA VEGETACIÓN

Patrones de los IV Asociados a Modelos de 
Interacciones de Segundo Orden del R e IRC

En la Figura 10 se presentan diferentes patrones 
asociados con los IV analizados en los Cuadros 4 y 
5, los cuales están clasif icados del peor (B1) al mejor 
(B6), de acuerdo a las Figuras 6 y 7.

En el Cuadro 7 se muestran los índices de 
vegetación de los Cuadros 3 y 4, mostrando en forma 
resumida el tipo de variación (y signo) asociada a los 
parámetros del modelo radiativo, así como el tipo de 
patrón correspondiente a cada IV.

A diferencia del caso de los modelos de 
interacciones de primer orden, en lo general los 
patrones matemáticos asociados a los IV asociados a 
interacciones de segundo orden resultan inadecuados y 
no justif ican su complejidad.

Así, en el caso de los índices de vegetación 
asociados a modelos de interacciones de segundo orden, 
ningún IV de los analizados modela en forma adecuada 
el patrón espectral asociado a las curvas espectrales iso-

IAF para la etapa vegetativa - reproductiva completa 
del crecimiento de la vegetación, ya que requiere dos 
patrones con signos contrarios.

Espacios Espectrales Diferentes del R-IRC

En los espacios espectrales del visible (R-A, R-V 
y V-A), las curvas del suelo son aproximadamente 
lineales (Gitelson et al., 2002; Paz et al., 2005) y 
están altamente correlacionadas linealmente (Clevers, 
1999). Asimismo, las bandas del infrarrojo medio 
están altamente correlacionadas linealmente con las 
del visible (Kaufman et al., 1997; Karnieli et al., 2001; 
Jiang et al., 2008), por lo que pueden ser usadas en 
términos intercambiables.

Otros espacios diferentes del R e IRC dejan 
invariante los patrones discutidos en las secciones 
anteriores, ya que puede plantearse una relación lineal 
entre los espacios del R e IRC y los demás (Paz et al., 
2014).

RsvqpAsv

RsvnmVsv

00

00

+=

+=

				       	     (9)

RsvzysvIRM

RsvwxsvIRM

IRCsvvtsvIRM

IRCsvsrsvIRM

00

00

00

00

2

1

2

1

+=

+=

+=

+=

				      (10)

Aunque el desarrollo de modelos radiativos, primer 
y segundo orden, para otros espacios espectrales sigue 

Índice a0 b0 c0 Patrón

RVI 0 V (+) 0 A2
NDVI 0 V (+) 0 A2
TVI 0 V (+) 0 A2
LNDVI 0 V (+) 0 A2
WDRVI 0 V (+) 0 A2
DVI V (+) C (+) 0 A4
PVI1 V (+) C (+) 0 A4
IVIS V (+) C (+) 0 A4
SLI V (+) C (+) 0 A1
PVI3 V (+) C (-) 0 A4
SAVI V (+) C (+) 0 A6
SAVI2 V (+) V (+) 0 A5
OSAVI V (+) V (+) 0 A6
TSAVI2 V (+) V (+) 0 A6
GESAVI V (+) V (+) 0 A6
PPVI V (+) V (+) 0 A5
MSAVI2 V (+) V (+) 0 A7
NDVIcp V (+) V (+) 0 A7
PVI2 V (+) C (+) C (-) A4
TSAVI1 V (+) V (+) V (+) A3

V = variable; C = constante.

Cuadro 6. Patrones asociados a los IV de interacciones de orden 
uno para el R e IRC.

 

B1 

B3 

B5 

B4 

B2 

B6 

k0 

k1 

Figura 10. Clasificación de patrones asociados a los índices de 
vegetación en el espacio k0-k1.
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pasos similares al caso del R-IRC, el problema de la 
falta de simetría en la línea del suelo hace esta tarea 
compleja e inestable (dispersión en la línea del suelo); 
con excepción de los espacios del visible (A, V y R) y 
del IRC.

En el Cuadro 8 se presentan la mayoría de los 
IV de espacios espectrales diferentes de R-IRC o en 
combinación con ellos.

Suponiendo líneas del suelo en los espacios 
espectrales de los IV del Cuadro 8, los índices 
mostrados tienen patrones lineales y representan el 
caso de interacciones de orden uno en la transferencia 
radiativa; con excepción de los índices MTVI2 y 
MCARI2. Estos dos índices, después del uso de las 
relaciones (9), tienen un formato def inido por:

1/2
1143

2
210

2 RkIRCsvRsvkIRCsvkRsvkRsvkkIRCsv +++++= 	   (11)

Los patrones entre k0 y k1, mismos argumentos que 
para el caso de interacciones de orden dos, muestran un 
formato similar a los casos analizados, por lo que no 
aportan información adicional.

En lo general, usando las transformaciones (9) y 
(10) y la discusión de Paz et al. (2014), los IV mostrados 
en el Cuadro 8 tienen las mismas restricciones que los 
casos analizados para el espacio del R-IRC, por lo que 
ningún IV de los analizados modela en forma correcta 
el patrón espectral asociado a las curvas espectrales 

iso‑IAF para la etapa vegetativa-reproductiva completa 
del crecimiento de la vegetación, que implica dos 
patrones con signos contrarios.

Efectos Atmosféricos en los Índices de Vegetación

Los efectos atmosféricos modif ican los valores de 
los IV (Myneni y Asrar, 1994), pero dejan invariantes 
los patrones matemáticos asociados a a0-b0 o k0-k1 (Paz 
et al., 2014). El Cuadro 9 enlista los principales índices 
espectrales de la vegetación propuestos para minimizar 
el efecto atmosférico.

El Cuadro 9  resume que, usando las relaciones 
(9) y (10), todos los índices tienen patrones lineales y 
corresponden a transformaciones lineales del modelo 
de interacciones de primer orden para R e IRC; con 
excepción del índice GEMI, el cual es un polinomio 
de sexto grado en Rsv y de quinto grado en IRCsv, 
con interacciones. En este caso, la complejidad de 
este índice no se justif ica por los argumentos vertidos 
anteriormente para el caso de polinomios de grado 
mayor a dos.

Considerando que las propuestas de modif icación 
de los efectos atmosféricos en los IV están orientadas 
a los IV analizados anteriormente y que los efectos 
atmosféricos son simples transformaciones lineales de 
las bandas espectrales (los patrones matemáticos de un 
polinomio de cualquier orden no se alteran), entonces 

Cuadro 7. Patrones asociados a los índices de vegetación de interacciones de orden dos para el R e IRC.

Índice k0 k1 k2 k3 k4 Patrón

RDVI 0 V (+) C (-) V (+) C (+) B2
MNLI V (+) V (+) 0 0 0 B6
NLI 0 V (+) 0 0 0 B2
BAI V (+) 0 C (-) 0 0 B3
IVI1 V (-) 0 C (-) C (+) 0 B4
IVI2 V (+) C (-) 0 C (+) 0 B6
IVI3 V (-) C (+) C (-) C (+) 0 B4
NDVI×SR 0 V (+) 0 V (+) 0 B1
IVI5 V (-) V (-) C (-) V (+) 0 B6
GEO V (-) V (+) C (-) V (+) 0 B6
RDVI 0 V (+) C (-) V(+) C (+) B3
SAVI×SR 0 V(+) V (+) 0 V (+) B3
IVI7 C (-) V (-) V (+) V (+) C (-) B4

V = variable; C = constante.
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ningún IV de los analizados modela en forma correcta 
el patrón espectral asociado a las curvas espectrales iso-
IAF para la etapa vegetativa - reproductiva completa del 
crecimiento de la vegetación, que implica dos patrones 
con pendientes con signos contrarios.

Diseño de Índices de Vegetación Generalizados – 
Interacciones de Orden 1 en R e IRC

Para modelar los patrones espectrales de las 
curvas iso-IAF es posible utilizar el modelo simple de 

 

 
 

 
Índice 
 

Expresión 
 
Patrón a0-b0 o k0-k1 

 
Autores 

GNDVI 
VIRC

VIRC

+

−
 Lineal Gitelson et al., 2002 
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)]([

)]([
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−−+

−−−

 
Lineal Gitelson et al., 2002 
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−+

−
 Lineal Gitelson et al., 2002 
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IRC

IRM1
 Lineal Rock et al., 1986 
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1

1
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−
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2

1

IRM
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12
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Lineal Lee y Nekane, 1997 
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Lineal Schneider, 1998 
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1
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Lineal Schneider, 1998 
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)2.5()1.2[1.2( VRVIRC −−−  

 
Lineal Haboudane et al., 2004 

 
MCARI1 )1.3()1.2[2.5( VIRCRIRC −−−

 
Lineal Haboudane et al., 2004 
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421

IRMlIRMl
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Lineal Kauth y Thomas, 1976 / 
Misra y Wheeler, 1977 

MTVI2 1/21/22 0.5]561)[(2

)]2.5()1.5[1.2(

−−−+

−−−

RIRCIRC
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Lineal Haboudane et al., 2004 

MCARI2 
1/21/22 0.5]561)[(2

)]1.3()1.5[2.5(

−−−+

−−−

RIRCIRC
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Lineal Haboudane et al., 2004 

Cuadro 8. Índices espectrales de la vegetación asociados a otros espacios espectrales diferentes de R e IRC o en combinación con ellos.

En este cuadro se reporta a los autores que primeramente publicaron el IV
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interacciones de primer orden en las bandas del R e 
IRC (Figura 1), pero bajo la consideración de modelar 
el  patrón def inido en la Figura 3a. Este patrón no 
logra modelarse por un polinomio, ya que su posición 
restringe esta aplicación.

El problema fundamental del espacio del R-IRC 
es que induce un cambio de pendiente en la curvatura 
del patrón entre a0-b0, que muchos IV la interpretan 
como una “saturación” de las bandas. En realidad 
no hay tal saturación (antes del punto R∞), solo es 

consecuencia de que los patrones lineales de algunos 
índices dif ieren más y más de los valores del segmento, 
aproximadamente lineal, asociado a a0-b0 cuando el 
IAF es mayor que 2. Esta saturación es consecuencia 
del formato de razones usado en la mayoría de los IV 
con patrones lineales en el espacio paramétrico a0-b0. 
Para evitar estas dif icultades se puede realizar una 
transformación del espacio R-IRC al espacio dIRC-R 
(dIRC = IRC - aS - bSR) (Figura 11) y se transporta al 
nuevo espacio a1 - β. La transformación está dada por 

Cuadro 9. Índices espectrales de la vegetación para minimizar el efecto atmosférico.
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(Paz et al., 2005):

β =
90-arctan b1( )

45

b1 =
b0
b0-bs

a1 = a0 1- b1( ) + asb1 				      (12)

En el espacio dIRC-R, la transformación lineal 
del espacio del R-IRC, las curvas espectrales iso-IAF 
tienen constantes a1 y b1. En este espacio, la línea del 
suelo está sobre el eje IRC y la línea del ápice de la 
Figura 1 tiene una orientación de 45° (pendiente igual 
a 1.0), Figura 11 e intersección con el eje IRC de (aS + 
bSR).

La trasformación lineal y angular usada para β 
permite evitar los problemas asociados a los parámetros 
de las líneas iso-IAF en el espacio del R-IRC. Ünsalan 
y Boyer (2004); Jiang et al. (2006) y Paz et al. (2006) 
han discutido este tipo de transformaciones lineales.

Para el caso de procesos radiativos tri-dimensionales 
(con sombreado), la relación entre a1 y β es lineal. 
La Figura 12 ilustra en forma esquemática la relación 
entre a1 y β. La variable β toma valores entre 0 y 1, 
donde el  valor de β = 1 representa el caso donde la 
banda del R está saturada (reflectancia en el inf inito). 
Para la condición de suelo desnudo (línea del suelo) β 
esta indef inido, ya que a1 es inestable (dependiendo de 

la cercanía a aS y bS) para esta situación. No obstante 
esto, para valores del IAF ligeramente arriba de βc 
(valor umbral), el patrón es lineal, tal como el mostrado 
en la Figura 11.

La ventaja del modelo de la Figura 12 es que todos 
los patrones de crecimiento, líneas iso-IAF, convergen 
al punto β = 1; independientemente de las constantes 
de las líneas del suelo. Aunque para estimar a1 y β 
se requiere conocer las constantes aS y bS, el patrón 
mostrado en la Figura 12 se mantiene si se utilizan 
una línea del suelo “virtual”, por ejemplo con aS = 0 
y bS = 1.

La Figura 13a muestra la relación a1 – β para 
el experimento de maíz y algodón discutido en la 
Figura 4, donde los valores de IAF menores a 0.5 no 
fueron utilizados. 

En la Figura 13b se muestra el caso de la utilización 
de todos los valores del IAF de los experimentos, pero 
con una línea del suelo virtual con aS = 0 y bS = 0.5, 
donde se observan dos patrones similares a los de la 
Figura 4.

Romero et al. (2009), desarrollaron el índice de 
vegetación cinéticamente modif icado y ajustado por 
el efecto del suelo o IV_CIMAS para modelar los dos 
patrones mostrados en la Figura 4 y Figura 13, usando 
el índice NDVIcp que es función de b0 (Paz et al., 
2007). La estrategia de modelación consistió en dos 
partes: usar el espacio a0 – 1/b0 para valores del IAF 
menores a 1.0 y el espacio a1 – β para valores del IAF 
mayores o iguales a 1. Para el caso del espacio a0 – 1/b0 
se utilizó la relación (Figura 4, despejándola para a0):
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Figura 11. Espacio transformado dIRC-IRC de los datos de la 
Figura 1. IRC = infrarojo cercano; IAF = índice de área foliar.

1.0 

β 

  a1 
   βc 

Figura 12. Patrón entre a1 - β para el caso tri-dimensional de 
transferencia radiativa.
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a0 = 1
db0

- cd

c,d constantes 					       (13)

Si sustituimos la relación (13) en IRC = a0 + b0R 
(interacciones de primer orden), se puede resolver la 
ecuación para b0:

b0 =
1
2R
⎛

⎝
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c
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⎦

⎥
⎥
		    (14)

La relación (14) muestra que con el conocimiento 
del patrón entre a0 y b0 podemos simplif icar el problema 
a estimar un solo parámetro (b0) usando solo el par 
medido de reflectancias (R, IRC).

En el caso del espacio a1 – β, se utiliza la relación 
(Figura 12a):

constantes 
1

rq,

raqβ +=

					       (15)

La relación (15) puede ser planteada en el espacio 
a0 – b0 como (Romero et al., 2011):

a0 =
1
r
(1− b0 )(2− q)+

arctan b0
b0 −1
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	   (16)

Al sustituir esta relación en IRC = a0 + b0R 
(interacciones de primer orden), se puede estimar b0 de:

IRC = 1− b0
r
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	   (17)

La obtención de b0 de la relación (17) fue haciendo 
una aproximación con el inverso de un polinomio de 
tercer grado en R e IRC (Romero et al., 2011), la cual 
es implícita en las constantes r y q de la relación (15).

Una forma directa de estimar b0 en el espacio a0‑b0 
es usando el patrón bilineal mostrado en la Figura 4 
(reflectancias en porcentajes):

a0 =
1
db0

−
c
d

,    1
b0

≥ 0.2

a0 =
1
fb0

−
e
f

,    1
b0

< 0.2

c =1,   d = −0.0223
e = 0.0532,   f = 0.0045 				      (18)

Usando el par (R, IRC) medido, b0 se estima de 
la relación (14) para ambos patrones lineales. La 
Figura  14 muestra los valores estimados del índice 
(b0-1)/b0 para los experimentos del maíz y algodón de 
la Figura 4, donde la estimaciones (casos de suelos 
diferentes y solo usando R e IRC) son similares a los 
valores medidos (b0 se midió del ajuste a las líneas del 
suelo de la Figura 2).

y = 0.0158x + 0.8952
R² = 0.9965
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Figura 13. Patrones a1 – β para los experimentos de maíz y algodón de la Figura 4: (a) consideración del uso de aS y bS medidos y solo 
valores para IAF mayor que 0.5 y (b) valores de todos los IAF, pero para as = 0 y bS = 0.5.
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Diseño de índices de vegetación generalizados – 
interacciones de orden 1 en R y orden 2 en IRC

En el caso de interacciones de orden 1 en R e 
interacciones de orden 2 en IRC, tal como se mencionó 
anteriormente, los autores no pudieron encontrar 
ningún IV con este patrón, por lo que esta sección 
discute el diseño de este tipo de índices.

En un enfoque semi-empírico (con base teórica 
en funciones matemáticas), es posible desarrollar 
diferentes IV para interacciones como las mencionadas 
(IV12). En el contexto general estático, el modelo de 
interacciones 12 (orden 1 en R y orden 2 en IRC) estará 
dado en el Cuadro 1 como:

2
000 RcRbaIRC ++= 				      (19)

Un primer ejercicio es el desarrollo de un IV12 
que tenga una relación lineal entre a0 y b0 y c0 sea una 
constante, por lo que estas condiciones pueden ser 
utilizadas para el índice:

IV121 =
aR2 + bR− cIRC + d

eR+ f
a,b,c,d,e, f  constantes 				     (20)

El IV121 implica un polinomio como el de la 
relación (19), con parámetros dados por:

IRC = d − fIV121
c

⎛

⎝
⎜

⎞

⎠
⎟+

b− eIV121
c

⎛

⎝
⎜

⎞

⎠
⎟R+

a
c
⎛

⎝
⎜
⎞

⎠
⎟R2

		    (21)

Por lo que de acuerdo a la metodología discutida 
previamente, se puede establecer la relación entre a0 y 
b0 (c0 = a/c) como:

b0 =
fb− ed
fc

⎛

⎝
⎜

⎞

⎠
⎟+

ec
fc

⎛

⎝
⎜

⎞

⎠
⎟a0

				      (22)

Dado el objetivo planteado, el IV de la relación 
(20) es ef icaz en lograrlo. Ahora bien, en relación a 
ef iciencia, las constantes pueden ser establecidas para 
capturar la esencia de la relación buscada, por lo que se 
puede hacer c = 1, d = 0 y f =1, para obtener:

ac

eabb

=

+=

0

00

			     		    (23)

La relación (23) puede ser simplif icada a solo dos 
parámetros si se evalúa la relación de b0 para el caso 
límite del suelo desnudo (b0 = bS y a0 = aS), conociendo 
el parámetro e:

b = bS- eaS					       (24)

Ahora solo se requiere de las constantes e y a; 
aunque todavía es posible reducirlas si se consideran 
condiciones limite superiores (reflectancias en el 
inf inito).

Otro índice que además de tener una relación lineal 
entre a0 y b0, genere una relación lineal (sin constante 
aditiva) entre a0 y c0 es:

IV122 =
aR2 + bR+ c
dIRC − eR

a,b,c,d,e  constantes

IRC = c
dIV122

⎛

⎝
⎜

⎞

⎠
⎟+

b+ eIV122

dIV122

⎛

⎝
⎜

⎞

⎠
⎟R+ a

dIV122

⎛

⎝
⎜

⎞

⎠
⎟R2

b0 =
e
d
⎛

⎝
⎜

⎞

⎠
⎟+

b
c
⎛

⎝
⎜
⎞

⎠
⎟a0

c0 =
a
c
⎛

⎝
⎜
⎞

⎠
⎟a0

	   	   (25)

IAF IAF

Figura 14. Valores medidos y estimados de (b0-1)/b0 del experimento de maíz y algodón.
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Finalmente, además de la relación lineal entre a0 
y b0, podemos generar un IV que tenga una relación 
lineal genérica entre a0 y c0:

IV123 =
aR2 + bR− cIRC + d

eIRC − fR+ g
a,b,c,d,e, f,g  constantes

IRC = d − qIV123

c+ eIV123

⎛

⎝
⎜

⎞

⎠
⎟+

b+ fIV123

c+ eIV123

⎛

⎝
⎜

⎞

⎠
⎟R+ a

c+ eIV123

⎛

⎝
⎜

⎞

⎠
⎟R2

b0 =
bg− fd
cg+ ed
⎛

⎝
⎜

⎞

⎠
⎟+

eb− fc
cg+ ed
⎛

⎝
⎜

⎞

⎠
⎟a0

c0 =
ag

cg+ ed
⎛

⎝
⎜

⎞

⎠
⎟+

e
cg+ ed
⎛

⎝
⎜

⎞

⎠
⎟a0

	   (26)

La parametrización de las relaciones (25) y 
(26) sigue los mismos pasos que para el caso de las 
relaciones (22) a (24).

Un procedimiento directo para el diseño de un IV12 
es estimar las constantes a0, b0 y c0 en función de las 
relaciones entre ellas, similar al caso de la estimación 
de b0 a partir de su relación con a0. Para ejemplif icar 
este enfoque, las curvas iso-IAF de la Figura 1 fueron 
parametrizadas con la relación (19), con una curva del 
suelo con aS = 1, bS =1.5 y cS = 0.002. 

La Figura 15 muestra las relaciones entre b0 y a0; 
y c0 y b0, para el caso de a0 < 16 equivalente a IAF ≤ 2 
(reflectancias en porcentajes).

La estimación de a0 puede ser puesta, de la 
Figura 15, como:

Caso a0 ≤16
a0 = a+ bb0

a0 = c+ d ln(c0 )
a,b,c,d  constantes 					      (27)

por lo que al sustituir las relaciones (27) en la (19) se 
tiene que:

IRC = a0 +
a0 − a
b

⎛

⎝
⎜

⎞

⎠
⎟R+ exp

a0 − c
d

⎛

⎝
⎜

⎞

⎠
⎟R2

			     (28)

Las constantes a y c pueden ser puestas en función 
de los parámetros de la curva del suelo, por lo que solo 
se requieren dos parámetros.

Dados el par de valores (R, IRC), la ecuación (28) 
puede ser resuelta para a0 y de las relaciones (27) se 
puede estimar b0 y c0, por lo que la curva iso-IAF queda 
totalmente def inida.

Al igual que la estimación de b0 usando los patrones 
bilineales de la Figura 4, podemos def inir las relaciones 
para a0 > 16 (Figura 16) por lo que se tiene:

constantes 

16

00

00

0

gf,e,d,

gcfa

ebda

a Caso

+=

+=

>

					       (29)

Con las nuevas relaciones, la estimación de a0 se 
obtiene de:

IRC = a0 +
a0 - d

e

⎛
⎝
⎜

⎞
⎠
⎟R +

a0 - f

g

⎛

⎝
⎜

⎞

⎠
⎟R

2

			    (30)

Las constantes d y f pueden ser puestas en función 
de las reflectancias en el inf inito o de los valores 
asociados a la transición en a0 = 16, por lo que solo se 
requieren dos parámetros.

Figura 15. Relaciones entre b0 y a0, así como c0 y a0, para el caso de a0 ≤ 16 (IAF ≤ 2), curvas iso-IAF de la Figura 1. 
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DISCUSIÓN Y CONCLUSIONES

- En este trabajo se analizó la estructura matemática 
(patrones) de un gran número de índices de vegetación 
(IV) espectrales publicados en la literatura, bajo 
diferentes transformaciones y modelos de transferencia 
radiativa en la vegetación, y se expusieron las hipótesis 
o patrones en estos índices. Así, después del análisis 
estructural de los índices de vegetación, se concluye que 
solo un IV de los analizados modela en forma correcta 
el patrón espectral asociado a las líneas espectrales 
iso-IAF (interacciones de primer orden) para la etapa 
vegetativa y reproductiva completa del crecimiento de la 
vegetación. Este índice fue simplif icado en un formato 
del espacio entre los parámetros de las líneas iso-IAF, 
para evitar los problemas de las transformaciones 
lineales y angulares usadas.
- La metodología planteada para el análisis de los índices 
de vegetación fue utilizada para el desarrollo de nuevos 
IV para el caso de interacciones de orden 1 de la banda 
del rojo y de orden 2 de la banda del infrarrojo cercano; 
tanto a nivel de enfoques matemáticos indirectos como 
de modelación directa. 
- El procedimiento directo presentado en este 
trabajo es general para cualquier caso del orden de 
las  interacciones y si se utiliza patrones por partes 
(lineales o no lineales); además de considerar el caso 
de que los parámetros puedan ser def inidos empírica o 
teóricamente.
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