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Woodrats (genus Neotoma) comprise 24 species found primarily in the United States and México.  The Neotoma mexicana species group 
reaches its southernmost distribution in the highlands of southern México and Central America.  Previous research suggested that N. mexi-
cana has a discontinuous distribution, whereas N. ferruginea and N. picta have allopatric distributions around the lowlands of the Isthmus of 
Tehuantepec.  However, these hypotheses were suggested with incomplete subspecific sampling near the isthmus.  We used samples of N. 
m. parvidens from the Sierra Sur de Oaxaca and N. m. tropicalis from the Sierra Norte de Oaxaca to assess their taxonomic affinity.  Our phylo-
genetic analyses of the mitochondrial cytochrome-b gene place both subspecies in N. ferruginea.  Therefore, we suggest that N. mexicana is 
continuously distributed from the United States to the Transmexican Volcanic Belt, N. picta inhabits the Guerreran Sierra Madre del Sur, and N. 
ferruginea ranges from the Oaxacan Sierra Madre del Sur to Central America.  Our findings also indicate that the Isthmus of Tehuantepec did 
not promote speciation in these woodrats.

Las ratas de campo (género Neotoma) incluyen 24 especies que principalmente habitan en Estados Unidos de América y México.  El grupo 
de especies Neotoma mexicana alcanza su distribución más sureña en las zonas montañosas del sureste de México y Centro América.  Previas 
investigaciones sugirieron que N. mexicana presenta una distribución discontinua, mientras que N. ferruginea y N. picta tienen distribuciones 
alopátricas alrededor de las tierras bajas del Istmo de Tehuantepec.  Sin embargo, estas hipótesis fueron sugeridas con un muestreo sub-es-
pecífico incompleto cerca del istmo.  Utilizamos muestras de N. m. parvidens de la Sierra Sur de Oaxaca y N. m. tropicalis de la Sierra Norte de 
Oaxaca para evaluar su afinidad taxonómica.  Nuestros análisis filogenéticos del gen mitocondrial citocromo b revelaron que ambas subespe-
cies pertenecen a N. ferruginea.  Por lo tanto, sugerimos que N. mexicana se distribuye de manera continua desde Estados Unidos hasta la Faja 
Volcánica Transmexicana, N. picta habita en la Sierra Madre del Sur en Guerrero, y N. ferruginea se distribuye desde la Sierra Madre del Sur en 
Oaxaca hasta Centro América.  Nuestros resultados también indican que el Istmo de Tehuantepec no promovió procesos de especiación en 
estas ratas de campo.
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Introduction
The heterogenous topography of southern México, and 
Pleistocene climatic changes, generated complex biogeo-
graphic patterns and high species diversity in vertebrates 
(León-Paniagua and Morrone 2009; Morrone 2017), espe-
cially in small mammals (Vallejo and González-Cózatl 2012; 
Guevara and Cervantes 2014; León-Paniagua and Guevara 
2019).  Many of the region’s mammals possess conservative 
morphologies; therefore, the number of species and their 
phylogenetic relationships are not entirely understood (Sul-
livan et al. 1997; Ordóñez-Garza et al. 2014; Pérez-Consuegra 
and Vázquez-Domínguez 2017).  Without an adequate tax-
onomy, it is impossible to understand fundamental aspects 
of the processes that generate and maintain biodiversity 
(Upham et al. 2019).

Woodrats of the genus Neotoma comprise at least 24 
species, distributed across portions of southern Canada and 
most of the continental United States and México, reaching 
Central America (Edwards and Bradley 2002a; Longhofer 
and Bradley 2006; Pardiñas et al. 2017).  Although Neo-

toma has been studied for almost 200 years, phylogenetic 
relationships and species limits are not entirely resolved 
(Edwards and Bradley 2002a; Longhofer and Bradley 2006; 
Matocq et al. 2007; Ordóñez-Garza et al. 2014) because 
some species and subspecies are rare and/or have 
restricted distributions that are poorly sampled (Rogers et 
al. 2011; Fernández 2014).

Taxonomic revisions (Merriam 1894; Goldman 1910) 
divided woodrats into several species groups, with only 
the N. mexicana species group reaching southern México 
and Central America (Pardiñas et al. 2017).  The N. mexicana 
species group, as defined by Goldman (1910), included 
eight species: N. chrysomelas, N. distincta, N. ferruginea 
(with subspecies N. f. ferruginea, N. f. chamula, N. f. isthmica, 
N. f. ochracea, N. f. picta, N. f. solitaria, and N. f. tenuicauda), 
N. mexicana (subspecies N. m. mexicana, N. m. bullata, N. m. 
fallax, N. m. madrensis, N. m. pinetorum, and N. m. sinaloae), 
N. navus, N. parvidens, N. torquata, and N. tropicalis.  Subse-
quently, N. f. griseoventer Dalquest, 1951; N. f. vulcani San-
born, 1935; N. m. atrata Burt, 1939; N. m. eremita Hall, 1955; 
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N. m. inopinta Goldman, 1933; N. m. inornata Goldman, 1938; 
and N. m. scopulorum Finley, 1953 were also described.  How-
ever, all species and subspecies in the N. mexicana species 
group, except N. chrysomelas, were relegated to subspecific 
status within N. mexicana by Hall (1955), and later, Anderson 
(1972) synonymized the subspecies N. m. madrensis with N. 
m. mexicana.  As defined by these revisions, the N. mexicana 
species group inhabits montane areas from northern Colo-
rado throughout much of New México and western Arizona 
south to western Nicaragua (Edwards and Bradley 2002b; 
Ordóñez-Garza et al. 2014).

Although several studies have investigated the phylo-
genetic relationships among Neotoma species (Edwards 
and Bradley 2002a; Longhofer and Bradley 2006; Matocq et 
al. 2007), only two have focused on the N. mexicana spe-
cies group (Edwards and Bradley 2002b; Ordóñez-Garza 
et al. 2014).  Using mitochondrial cytochrome b (cyt-b) 
sequences, Edwards and Bradley (2002b), and Ordóñez-
Garza et al. (2014) concluded that this species group 
includes at least the species N. mexicana from the United 
States through northern and central México and south of 
the Transmexican Volcanic Belt in southeastern México and 
Central America, N. picta in the Sierra Madre del Sur from 
Guerrero, N. ferruginea from western portions of the Isth-
mus of Tehuantepec south to El Salvador, and Neotoma 
chrysomelas, which inhabits parts of Honduras and Nicara-
gua (Pardiñas et al. 2017).  After these taxonomic changes, 
19 subspecies of N. mexicana and four subspecies of N. fer-
ruginea are recognized, whereas N. picta and N. chrysomelas 
are monotypic (Pardiñas et al. 2017).

Despite the progress on the systematics and phylo-
genetic relationships in the N. mexicana species group, 
no samples of some subspecies have been analyzed with 
genetic data.  These include N. m. parvidens, N. m. tropicalis 
from Oaxaca, or N. m. solitaria from Central America, and 
these three subspecies, with disjunct geographic ranges, 
have remained in N. mexicana (Edwards and Bradley 2002b; 
Ordóñez-Garza et al. 2014; Pardiñas et al. 2017; Figure 1).  
Nevertheless, Edwards and Bradley (2002b) suggested that 
individuals from southeastern Oaxaca and east of the Isth-
mus of Tehuantepec (possibly including N. m. solitaria from 
Guatemala and Honduras) are N. ferruginea, specimens from 
the Sierra Madre del Sur in Guerrero (and possibly including 
N. m. parvidens from the Sierra Sur de Oaxaca) are N. picta, 
and all samples in northern Oaxaca (possibly including 
N. m. tropicalis from Sierra Norte de Oaxaca and hills near 
the Chiapas border) represent N. mexicana.  These taxo-
nomic hypotheses, which placed the boundaries among 
the ranges of N. mexicana, N. ferruginea, and N. picta near 
the Isthmus of Tehuantepec, relied on the biogeographic 
recognition of this lowland area as an essential barrier that 
has promoted speciation in many other highland mammals 
species (Woodman and Timm 1999; Arellano et al. 2005; 
León-Paniagua et al. 2007; Ordóñez-Garza et al. 2010).

Herein, we use samples of N. m. parvidens and N. m. trop-
icalis from the western Isthmus of Tehuantepec (Figure 1) 

to test the taxonomic affinity of these subspecies.  Neotoma 
m. parvidens and N. m. tropicalis are geographically isolated 
from other populations of N. mexicana (Figure 1).  The type 
locality of N. m. parvidens is “Juquila, Oaxaca, México” and 
the N. m. parvidens sample (MZFC 11029) is from the same 
location: La Yerbabuena, Santa Catarina Juquila, Oaxaca 
(Figure 1).  The type locality of N. m. tropicalis is the north-
eastern Oaxacan mountains (Goldman 1910) in Totontepec 
(Goldman 1904).  This subspecies only occurs in the Sierra 
Norte de Oaxaca and hills near the Chiapas border, and no 
other Neotoma inhabit this area (Ordóñez-Garza et al. 2014; 
Pardiñas et al. 2017).  The N. m. tropicalis sample (MZFC 
8088) is from Xiacaba, 6.5 km ESE de Santa María Yavesía, 
Santa María Yavesía, Oaxaca, in the Sierra Norte de Oaxaca, 
around 36 km west of the type locality (Figure 1).

We sequenced the mitochondrial cyt-b because of its 
availability from a broad range of N. mexicana samples 
(Edwards and Bradley 2002b; Ordóñez-Garza et al. 2014), 
and its proven utility to clarify relationships in Neotoma 
(Edwards and Bradley 2002a) and closely related genera 
(Amman and Bradley 2004; Arellano et al. 2005; Bradley et 
al. 2007; León-Tapia 2013; Rogers et al. 2007; Vallejo and 
González-Cózatl 2012).

Materials and methods
We sequenced 1,143 base pairs of the mitochondrial cyt-b 
in specimens of N. m. parvidens (n = 1), N. m. tropicalis (n 
= 1), N. m. tenuicauda (n = 2), and N. leucodon (n = 1).  We 
examined the external and cranial morphology of these 
specimens to confirm their taxonomic identity (Goldman 
1904, 1910).  Voucher specimens are deposited in the mam-
mal collection of the Museo de Zoología, Facultad de Cien-
cias, Universidad Nacional Autónoma de México, Ciudad de 
México, México (MZFC; Appendix I).  We also downloaded 
twenty-five sequences from GenBank: N. mexicana (n = 15), 
N. picta (n = 2), N. ferruginea (n = 7), and N. stephensi (n = 1; 
Appendix I; Edwards and Bradley 2002b; Ordóñez-Garza et 
al. 2014).

Molecular protocols.  We extracted whole genomic 
DNA using a Qiagen DNEasy Blood and Tissue kit (Qiagen, 
Germantown, Maryland), following the manufacturer’s 
recommended protocols.  Through polymerase chain 
reaction (PCR), we amplified the complete cyt-b using 
the primers MVZ05 (Smith and Patton 1993) and H15915 
(Irwin et al. 1991).  Each PCR had a final reaction volume 
of 13 μL and contained 6.25 μL of GoTaq Green Master Mix 
(Promega, Madison, WI, USA), 4.75 μL of H20, 0.5 μL of each 
primer [10μM], and 1 μL of DNA stock. The PCR thermal 
profile included 2 minutes of initial denaturation at 95°C, 
followed by 38 cycles of 30 seconds of denaturation at 95°C, 
30 seconds of annealing at 50°C, and 68 seconds for the 
extension at 72°C. We included a 5-minute final extension 
step at 72°C.  We visualized 3 μL of each PCR product using 
electrophoresis in 1% agarose gels, stained with SYBR Safe 
DNA Gel Stain (Life Technologies, Carlsbad, CA, USA).  Each 
PCR product was then cleaned with 1 μL of a 20 % dilution 
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of ExoSAP-IT (GE Healthcare Bio-Sciences Corp. Piscataway, 
NJ, USA) incubated for 30 minutes at 37°C followed by 15 
minutes at 80°C.  Samples were cycle-sequenced using 
6.1 μL of H20, 1.5 μL of 5x buffer, 1 μL of 10μM primer, 
0.4 μL of ABI PRISM Big Dye v. 3.1 (Applied Biosystems, 
Foster City, CA, USA), and 1 μL of the cleaned template.  
The cycle-sequencing profile included 1 minute of initial 
denaturation at 96°C, followed by 25 cycles of 10 seconds 
for denaturation at 96°C, 5 seconds for annealing at 50°C, 
and 4 minutes for the extension at 60°C.  Cycle sequencing 
products were purified using an EtOH-EDTA precipitation 
protocol and were read with an ABI 3130xl genetic analyzer 
(Applied Biosystems, Foster City, CA, USA).  DNA sequences 
were edited, aligned, and visually inspected using Mega X 
(Kumar et al. 2018) and FinchTV 1.4 (Patterson et al. 2004).

Phylogenetic relationships.  We used maximum likeli-
hood (ML) and Bayesian inference (BI) to estimate the N. 
mexicana species group’s phylogenetic relationships.  We 
analyzed a total of 28 individuals in the N. mexicana species 
group with N. leucodon and N. stephensi as outgroups.  We 
used both external groups because it is not clear if N. ste-
phensi, or the clade that includes the species groups N. flori-
dana + N. lepida + N. micropus (that includes N. leucodon), 

is sister to the N. mexicana species group (Matocq et al. 
2007).  In PartitionFinder 2 (Lanfear et al. 2016), we selected 
the best model and partition scheme (maximally divided 
by codon position) among all available models in MrBayes 
3.2 (Ronquist et al. 2012), using the Bayesian Information 
Criterion (BIC).  We used this result for both ML and BI. In IQ-
TREE 1.6.12 (Nguyen et al. 2015), we estimated the ML gene 
tree, with branch support estimated by 1,000 replicates of 
nonparametric bootstrap. In MrBayes 3.2 we used three hot 
chains and one cold chain in two independent runs of 10 
million generations, sampling data every 1,000 iterations.  
We checked for convergence of MCMC results by examin-
ing trace plots and sample sizes in Tracer 1.7 (Rambaut et 
al. 2018).  The final topology was obtained using a majority 
rule consensus tree and considering a burn-in of 25 % (with 
effective sample sizes > 200).

To test whether our inferred best topologies are sta-
tistically superior to past taxonomic hypotheses, we con-
strained topologies to fit taxonomy (forcing the monophyly 
of N. m. parvidens or N. m. tropicalis and all other N. mexi-
cana samples) and analyzed these in MrBayes 3.2 (same set-
tings as above).  To compare the unconstrained BI and the 
constrained topologies, we used the Shimodaira-Hasegawa 

Figure 1.  Specimens analyzed in this study. Black circles represent samples sequenced in this work, whereas black crosses indicate previously published sequences.  Map colors show 
previously suggested geographic ranges for the N. mexicana species group (Edwards and Bradley 2002b; Pardiñas et al. 2017).  The inset shows all type localities from Guerrero and Oaxaca 
(red diamonds) and the main biogeographic regions.  Localities of samples included in this work: N. m. parvidens, México: Oaxaca; Santa Catarina Juquila, La Yerbabuena (MZFC 11029); N. 
m. tenuicauda, México: Colima; Comala, La Yerbabuena (MZFC 11989); Michoacán; Zinapécuaro, Araró, Campo Alegre (MZFC 12327); N. m. tropicalis, México: Oaxaca; Santa María Yavesía, 
Xiacaba, 6.5 km ESE de Santa María Yavesía (MZFC 8088).
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test (Shimodaira and Hasegawa 1999) as implemented in 
the package phangorn 2.5.5 (Schliep 2011) for R 3.6.2 (R Core 
Team 2014).  We compared the likelihood fits assuming an 
HKY+G substitution model and 10,000 bootstrap replicates.  
We performed analyses with and without optimizing the 
rate matrices and base frequencies.

Genetic differentiation and genetic diversity.  To evaluate 
differentiation levels among members of the N. mexicana 
species group, we calculated p-distances in Mega X, using 
the pairwise deletion option and the Kimura 2-parameter 
model (Kimura 19804).  These settings were chosen to facili-
tate comparisons with previous works (Bradley and Baker 
2001; Baker and Bradley 2006; Ordóñez-Garza et al. 2014).  
To clarify whether intraspecific variation was correlated 
with geography, we performed a Mantel test on genetic dis-
tances (previously calculated in Mega) and Euclidean geo-
graphic distances in the R package adegenet 2.1.3 (Jombart 

2008; Jombart and Ahmed 2011).  The Mantel test’s signifi-
cance was assessed using 99,999 permutations, and plots 
were colored by 2-dimensional kernel density estimation in 
the R package MASS 7.3-51.4 (Venables and Ripley 2002).  
To further characterize genetic diversity, we used DnaSP 
5.10 (Librado and Rozas 2009) to calculate the number of 
segregating sites, the number of haplotypes, haplotype 
diversity (Hd), and nucleotide diversity (π) for each species.

Results
Our alignment covered 100 % in > 97 % of positions, con-
tained 290 variable characters, and 196 parsimony-informa-
tive characters.  The best evolutionary model scheme was 
K80+G, HKY+I, and GTR+I applied to the first, second, and 
third codon positions, respectively.  Topologies from ML and 
BI trees were similar (Figure 2), revealing well-supported sis-
ter relationships between N. picta (from the Guerreran Sierra 

Figure 2.  Majority rule consensus tree of the Neotoma mexicana species group, obtained from Bayesian analysis of cytochrome b sequences.  Support values are shown as posterior 
probabilities followed by bootstrap values from a maximum likelihood analysis.  Support values < 0.8/80 are not shown. Samples of N. m. parvidens (MZFC 11029) and N. m. tropicalis (MZFC 
8088) are denoted with blue boxes within N. ferruginea. Tip labels show country (ES = El Salvador, GT = Guatemala, MX = México, US = the United States), states/provinces (sa = Santa Ana; 
hu = Huehuetenango, qe = Quetzaltenango; cl = Colima, cs = Chiapas, gr = Guerrero, gt = Guanajuato, mi = Michoacán, na = Nayarit, oa = Oaxaca, ve = Veracruz; az = Arizona, co = Colorado, 
nm = New Mexico, tx = Texas, ut = Utah), and catalog number.
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Madre del Sur) and N. ferruginea (Oaxaca to Central America; 
ML and BI), with this clade sister to N. mexicana (from the 
United States to the Transmexican Volcanic Belt in central 
México; BI only).  Our samples of N. m. parvidens (MZFC 
11029) and N. m. tropicalis (MZFC 8088) were closely related 
to N. ferruginea rather than N. mexicana.  The constrained 
analyses, which forced these subspecies to be members 
of N. mexicana, produced significantly worse likelihoods in 
both cases, with the optimized (P < 0.001 for each subspe-
cies) and not optimized (P < 0.001 for each subspecies) data.  
Hence, the Shimodaira-Hasegawa test strongly rejected the 
placement of N. m. parvidens and N. m. tropicalis in N. mexi-
cana (Table 1). In the following analyses, we included both 
specimens (MZFC 11029 and 8088) in N. ferruginea.

The average mitochondrial distance between N. mexi-
cana and N. picta was 9.68 % (range = 8.97 to 10.1), between 
N. mexicana and N. ferruginea was 9.46 % (range = 8.02 to 
10.81), and between N. picta and N. ferruginea was 7.94 % 
(range = 7.79 to 7.98).  Within species, the average genetic 
distance between the Chiapan and all other samples in N. 
ferruginea was 2.91% (range = 2.05 to 3.3), and between 
the Mexican and the United States N. mexicana samples 
was 3.86 % (range = 3.15 to 4.83; Figure 3). The Mantel 
tests revealed significant isolation by distance among N. 
mexicana (P = 0.00001, R2 = 0.8351) and N. ferruginea (P = 
0.00844, R2 = 0.1907; Figure 4).  Finally, in N. mexicana and 
N. ferruginea we found high haplotype diversity values (Hd 
= 0.978 and 1, respectively), but within each species, all 
haplotypes were similar (π = 0.025 and 0.023, segregating 
sites = 99 and 72, respectively).  In N. picta the two analyzed 
specimens had the same haplotype (Table 2).

Table 1.  Results of Shimodaira-Hasegawa tests of alternative phylogenetic hypoth-
eses (unconstrained = obtained in this work from BI, constrained = monophyly of N. m. 
parvidens or N. m. tropicalis forced with all other N. mexicana samples), with and without 
optimizing the rate matrices and base frequencies.  Asterisks indicate statistical rejection 
of topological equivalence (α = 0.05).

No optimization Optimization

In L ∂ L P In L ∂ L P

Unconstrained -4568.9 0.000 0.4965 -4089.1 0.000 0.4967

Constrained   
(N. m. parvidens) -4684.6 115.665 0.0000* -4137.5 48.405 0.0000*

Constrained 
(N. m. tropicalis) -4683.2 114.291 0.0000* -4136.8 47.736 0.0001*

Table 2.  Genetic diversity summary statistics for species in the Neotoma mexicana 
species group. n = sample size, S = number of segregating sites, h = number of haplo-
types, Hd = haplotype diversity, π = nucleotide diversity, SD = standard deviation.

  n S h Hd
SD 

(Hd)
π

SD 
(π)

Neotoma mexicana 17 99 15 0.978 0.031 0.025 0.002

Neotoma picta 2 0 1 0 0 0.000 0.000

Neotoma ferruginea 9 72 9 1 0.052 0.023 0.003

Figure 3.  Heat map showing Kimura 2-parameter genetic distances in the N. mexicana species group.  Interspecific and intraspecific comparisons are shown above and below the 
black line, respectively.  Geographic information is shown on the y-axis (ES = El Salvador, GT = Guatemala, MX = México, US = the United States; sa = Santa Ana; hu = Huehuetenango, qe 
= Quetzaltenango; cl = Colima, cs = Chiapas, gr = Guerrero, gt = Guanajuato, mi = Michoacán, na = Nayarit, oa = Oaxaca, ve = Veracruz; az = Arizona, co = Colorado, nm = New Mexico, tx 
= Texas, ut = Utah).
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Discussion
Although woodrats are regionally typical, taxa in the N. mex-
icana group are poorly known regarding their systematics 
and ecology (Edwards and Bradley 2002b).  Previous analy-
ses pointed out the possibility that the Isthmus of Tehuante-
pec promoted diversification in this species group because 
individuals from the eastern Isthmus were assigned to N. 
ferruginea, those from the Guerreran Sierra Madre del Sur 
and, possibly from Sierra Sur the Oaxaca, were referred to 
N. picta, and individuals from northern Oaxaca were desig-
nated N. mexicana (Edwards and Bradley 2002b).  However, 
our results reject these taxonomic hypotheses.  We found 
that N. ferruginea is paraphyletic, both N. m. parvidens from 
the Sierra Sur de Oaxaca and N. m. tropicalis from Sierra 
Norte de Oaxaca are related to N. ferruginea rather than N. 
mexicana or N. picta.  For taxonomy to reflect evolutionary 
history, the parvidens and tropicalis subspecies should be 
considered populations of N. ferruginea.  With these taxo-
nomic modifications, species boundaries in the N. mexicana 
species group no longer lie near the Isthmus of Tehuante-
pec, and N. ferruginea spans this biogeographic barrier.  As 
such, we find no evidence that the isthmus promoted spe-
ciation or maintains long-term geographic isolation in this 
species group.  Our conclusions are based on high levels 
of mitochondrial DNA divergence and backed by morpho-
logical evidence (see below), but should be further tested 
in future works using independently sorting nuclear loci.

Our placement of parvidens and tropicalis in N. ferru-
ginea (Figures. 2, 3, 4, Table 1) is consistent with Goldman’s 
(1910) conclusions.  Although N. f. parvidens and N. f. tropi-
calis were considered independent species in his mono-
graph, he described both taxa as members of the “ferru-
ginea section” inhabiting mountain slopes of southwestern 
and northeast Oaxaca, respectively (Goldman 1910).  The 
geographic ranges we suggest herein eliminate some of 

the previously proposed geographic disjunctions, and they 
align well with some common biogeographic boundar-
ies.  Firstly, the southern geographic limit of N. mexicana is 
located in the Transmexican Volcanic Belt (Figure 5), a bio-
geographic barrier to many other Nearctic species (Morrone 
2019).  We detected intraspecific genetic variation consis-
tent with isolation by distance (Figures 3 and 4A).  Secondly, 
in southern México, Neotoma picta, N. f. parvidens, and N. f. 
tropicalis inhabit the eastern Sierra Madre del Sur sub-prov-
ince, because the Sierra Sur de Oaxaca and the Sierra Norte 
de Oaxaca are also part of the eastern Sierra Madre del Sur.  
A recent biogeographical study of the eastern Sierra Madre 
del Sur suggested that it comprises two areas, the Guer-
reran and the Oaxacan Highlands districts, each one sup-
ported by many local endemic taxa (Santiago-Alvarado et 
al. 2016; Morrone 2017).  We suggest that N. picta inhabits 
the Guerreran district of the Eastern Sierra Madre del Sur 
sub-province, whereas N. ferruginea inhabits a large area 
from the Oaxacan highlands district across the Isthmus of 
Tehuantepec to Central America (Figure 5).

A previous dated phylogenetic analysis inferred Late 
Pleistocene diversification in the N. mexicana group and sug-
gested that habitat expansion and contraction promoted 
diversification (Ordóñez-Garza et al. 2014).  We detected 
low levels of nucleotide diversity but high levels of hap-
lotype diversity (Table 2), a pattern consistent with recent 
demographic expansions (Hedrick 2011), so the hypoth-
esized effect of Pleistocene habitat cycles on this species 
group is consistent with our results.  Additionally, we found 
intraspecific genetic differentiation from 1.68 to 3.58 % in 
N. ferruginea across the Isthmus of Tehuantepec.  These low-
lands are a minimally 200-km-wide valley at approximately 
250 meters above sea level (Barrier et al. 1998), representing 
a significant barrier for many montane species (Peterson et 
al. 1999).  However, the Isthmus of Tehuantepec did not 

Figure 4.  Bi-variate plots of geographic and genetic distances of A) Neotoma mexicana, and B) Neotoma ferruginea.  Warmer colors indicate higher point densities.  Mantel test results 
are shown.
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promote speciation in these woodrats because its genetic 
differentiation seems more related to geographic distances 
rather than geographic barriers (Figure 4B), there is not a 
clear and supported geographic structure in the phyloge-
netic inferences (Figure 2), and because the most differ-
ent individuals were detected in Chiapas and not between 
eastern and westernmost populations (Figure 3).  Interest-
ingly, a Chiapan Pleistocene refugium has been suggested 
in other mammal studies (Guevara-Chumacero et al. 2010; 
Gutiérrez-García and Vázquez-Domínguez 2012).  Future 
phylogeographic studies on N. ferruginea could test for 
signals of a Pleistocene refuge in the highlands of Chiapas, 
which could have served as a source for the Oaxacan and 
Central American populations.

Finally, N. m. solitaria from Guatemala and Honduras’s 
uncertain placement, as a subspecies of N. mexicana or N. 
ferruginea has been previously mentioned (Ordóñez-Garza 
et al. 2014; Pardiñas et al. 2017).  Neotoma m. solitaria was 
initially described as a subspecies of N. ferruginea with a 
small body size, and short, bright fur (Goldman 1905), but 
it was relegated to subspecific status within N. mexicana by 
Hall (1955) without a formal analysis.  Subsequent revisions 
on the N. mexicana species group showed that the lumping 
of its members obscured the real diversity and evolution-
ary history of these woodrats (Edwards and Bradley 2002b; 
Ordóñez-Garza et al. 2014).  Although we did not analyze 

samples of N. m. solitaria, previous morphological descrip-
tions (Goldman 1910), and the geographic ranges of the N. 
mexicana species group members (Figure 5) suggest the best 
available option is to re-assign N. m. solitaria to N. ferruginea.

Although our results rely on a small data set, the inclu-
sion of novel samples from type localities improved reso-
lution of the evolutionary history and geographic limits of 
N. mexicana species group members.  The species ranges 
we propose are geographically coherent and separated 
by standard biogeographic boundaries.  A continued sam-
pling of wild populations is needed to provide a rigorous 
understanding of southern Mexican mammals’ diversity 
and endemism.
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Appendix I

 Specimens analyzed in this work

Taxon GenBank Catalog # Tissue # Country State/Province Lat Long

Neotoma leucodon MW419110 MZFC 12332 3814 México Guanajuato 21.583 -100.993

Neotoma stephensi AF308867 TTU 78505 TK 77928 US Arizona 34.737 -110.043

Neotoma mexicana inopinata AF298841 MSB 121363 NK 36282 US Utah 37.592 -109.955

Neotoma mexicana mexicana AF294346 TTU 101643 TK 90038 US Texas 30.639 -104.166

Neotoma mexicana pinetorum FJ716222 TTU 100791 US Arizona 35.874 -111.972

Neotoma mexicana scopulorum FJ716223 TTU 107426 US Colorado 40.321 -105.484

Neotoma mexicana scopulorum AF186821 DMNH 8577 TK 51346 US Colorado 37.002 -104.369

Neotoma mexicana scopulorum AF294345 TTU 79129 TK 78350 US New Mexico 35.883 -106.324

Neotoma mexicana scopulorum AF298848 MSB 74280 NK 62439 US New Mexico 33.990 -107.181

Neotoma mexicana scopulorum AF298849 TTU 79128 TK 78349 US New Mexico 35.883 -106.324

Neotoma mexicana scopulorum AF298846 MSB 82309 NK 62415 US New Mexico 33.944 -107.187

Neotoma mexicana scopulorum AF298847 NK 62425 US New Mexico 33.943 -107.186

Neotoma mexicana tenuicauda MW419114 MZFC 11989 4442 México Colima 19.478 -103.683

Neotoma mexicana tenuicauda AF298843 TK 47774 México Michoacán 19.809 -102.290

Neotoma mexicana tenuicauda KF772877 TTU 110066 México Michoacán 19.427 -102.244

Neotoma mexicana tenuicauda AF298842 TK45631 México Michoacán 19.689 -101.591

Neotoma mexicana tenuicauda MW419113 MZFC 12327 4581 México Michoacán 19.942 -100.820

Neotoma mexicana tenuicauda KF772878 TTU 110064 México Nayarit 21.660 -104.421

Neotoma mexicana torquata KF801364 TTU 104970 México Veracruz 19.527 -97.156

Neotoma picta AF305568 TTU 82667 TK93384 México Guerrero 17.612 -99.896

Neotoma picta AF305569 TK 93390 México Guerrero 17.612 -99.896

Neotoma ferruginea chamula AF305567 TTU 82666 TK 93296 México Chiapas 16.755 -92.773

Neotoma ferruginea chamula KF772876 USNM 569553 Guatemala Huehuetenango 15.535 -91.393

Neotoma ferruginea ferruginea KF772873 JGO 9027 El Salvador Santa Ana 13.827 -89.625

Neotoma ferruginea isthmica AF298840 TTU 36179 TK 20551 México Chiapas 16.738 -93.117

Neotoma ferruginea isthmica AF329079 TTU 82665 TK 93257 México Oaxaca 16.486 -95.893

Neotoma ferruginea parvidens MW419111 MZFC 11029 4123 México Oaxaca 16.203 -97.355

Neotoma ferruginea tropicalis MW419112 MZFC 8088 2604 México Oaxaca 17.216 -96.367

Neotoma ferruginea vulcani KF772874 USNM 569657 Guatemala Quetzaltenango 14.752 -91.463

Neotoma ferruginea vulcani KF772875 USNM 569672   Guatemala Quetzaltenango 14.721 -91.481
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