

DOI:10.24850/j-tyca-2018-05-07

Artículos

Índice de concentración de la precipitación diaria en la cuenca del Río Grande de Morelia

Rodrigo Roblero-Hidalgo¹ Jesús Chávez-Morales² Laura Alicia Ibáñez-Castillo³ Oscar L. Palacios-Vélez⁴ Abel Quevedo-Nolasco⁵ Juan Manuel González-Camacho⁶

¹Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México, México, rodrigo-roblero@hotmail.com

²Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México, México, chavezje@colpos.mx

³Universidad Autónoma Chapingo, Chapingo, Estado de México, México, libacas@gmail.com

⁴Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México, México, palacio@colpos.mx

⁵Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México, México, anolasco@colpos.mx

⁶Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México, México, jmgc@colpos.mx

Autor para correspondencia: Rodrigo Roblero-Hidalgo,

rodrigo-roblero@hotmail.com

Resumen

Se realizó una evaluación del índice de concentración de precipitación diaria (CI), como un indicador para caracterizar las subcuencas de la cuenca hidrológica, que representan diferentes grados de torrencialidad pluviométrica. El CI se estimó por medio de la curva de Lorenz, para

evaluar el peso relativo de los días más lluviosos en series de datos de precipitación diaria, que se registró en 34 estaciones meteorológicas convencionales (EMC), dentro y próximas a la cuenca del Río Grande de Morelia desde su origen, aquas arriba de la presa Cointzio, hasta su desembocadura en el lago de Cuitzeo. El Río Grande pasa por la ciudad de Morelia, la cual se ha visto afectada por inundaciones de forma cíclica, que han dejado como consecuencias graves daños: pérdidas humanas y afectaciones a la infraestructura, así como deterioro en la producción agrícola, pecuaria y forestal. Se elaboró una plataforma en un sistema de información geográfica (SIG), para la delimitación y caracterización de la cuenca, y sus 23 subcuencas. Se calculó el CI para cada EMC, con el que se generaron isopletas con intervalos de 0.01 y una capa ráster del CI; se calculó el promedio del CI para las 23 subcuencas y para la cuenca. Con base en los resultados se propone una escala de torrencialidad del CI, esto es: bajo torrencial (0.476-0.515); medio torrencial (0.515-0.538); torrencial (0.538-0.560), y altamente torrencial (0.560-0.607). El promedio ponderado para la cuenca resultó un CI = 0.55, que corresponde a una cuenca torrencial; el CI se relacionó con el clima de la cuenca.

Palabras clave: índice de concentración, torrencialidad, isopletas y cuenca.

Recibido: 03/07/2017 Aceptado: 14/03/2018

Introducción

Algunas cuencas hidrológicas y sus subcuencas están afectadas por fenómenos hidrometeorológicos, como precipitaciones extremas, producidas por las lluvias temporales o por fenómenos atmosféricos migratorios, como tormentas tropicales y ciclones, entre otras. Estas precipitaciones extremas dan lugar a escurrimientos extraordinarios, que pueden producir inundaciones que causan daños mayores, dejando como consecuencias pérdidas humanas, daños a la infraestructura

urbana e hidroagrícola, y un gran deterioro de la producción agrícola, pecuaria y forestal.

Por lo anterior, se plantea que mediante la estimación del índice de concentración (CI, por sus siglas en inglés) es posible evaluar la torrencialidad en cuencas hidrológicas. Así, el objetivo de este estudio es estimar el CI en las subcuencas y cuenca del Río Grande de Morelia, Michoacán, México, para evaluar el grado de torrencialidad.

Martín-Vide (2004) propuso una metodología para estimar el índice de concentración de precipitación diaria mediante la aplicación de la curva de Lorenz para evaluar el peso relativo de los días más lluviosos, en series de datos de precipitación diaria, registrada en estaciones meteorológicas convencionales (EMC); Zubieta, Saavedra, Silva y Giráldez (2016) presentan un estudio sobre la estimación de torrencialidad en una cuenca hidrológica, utilizando el índice de concentración (CI) y su distribución espacial en la cuenca del río Mantaro, Perú.

Los estudios que se han realizado sobre el CI se enfocan en la regionalización de la precipitación, una de las fases a considerar en el estudio, como las investigaciones de Martín-Vide y Estrada-Mateu (1992); De Luis, González-Hidalgo y Sánchez (1996); Martín-Vide y Llasat (2000); Martín-Vide (2004); Martín-Vide et al. (2008); Alijani, O'Brien y Yarnal (2008); Zhang, Xu, Gemmer, Chen y Liu (2009); Lana, Burgue, Martínez y Serra (2009); Li, Jiang, Li y Wang (2011); Benhamrouche y Martín-Vide (2011); Vargas, Santos, Cárdenas y Obregón (2011); Velasco-Martínez, Mendoza-Palacios, Campos-Campos y Castillo-Bolainas (2011); Suhaila y Aziz (2012); Cortesi, González-Hidalgo, Brunetti y Martín-Vide (2012); Sarricolea y Martín-Vide (2012); Benhamrouche y Martín-Vide (2012); Zubieta y Saavedra (2013); Espinoza, Herrera y Araya (2013); Shi et al. (2014); Meseguer-Ruiz, Olcina-Cantos Sarricolea-Espinoza Martín-Vide, У (2014);Benhamrouche (2014); Sarricolea y Romero (2015); Benhamrouche et al. (2015); Huang, Huang, Chen, Xing y Leng (2016); Zubieta et al. (2016); Monjo y Martín-Vide (2016); Hamzah, Zainal y Jaafar (2016).

Sin embargo, en México no se ha presentado alguna aplicación desde un enfoque hidrológico que permita estimar la torrencialidad de la precipitación en cuencas hidrológicas, basado en el índice de concentración de precipitación diaria (CI), como un indicador para estimar el grado de agresividad o torrencialidad de la lluvia que se presenta en la cuenca y sus subcuencas.

En este trabajo se presenta la aplicación del método con base en el índice de concentración de precipitación diaria (CI), como un indicador para estimar el grado de agresividad o torrencialidad de la lluvia que existe en la cuenca y sus subcuencas hidrológicas del Río Grande de Morelia, donde se localiza la ciudad de Morelia, la cual en forma cíclica se ha visto afectada por caudales extraordinarios del Río Grande y sus afluentes (Conagua, 2016).

Materiales y métodos

En la descripción de materiales se presenta la ubicación del área de estudio, las características del modelo de elevación y la información de precipitación diaria.

Zona de estudio

La investigación se realizó en la cuenca del Río Grande de Morelia, Michoacán, México, en la cual se encuentra la zona urbana de la ciudad de Morelia, desde aguas arriba de la presa Cointzio y hasta su desembocadura en el lago de Cuitzeo, con un área de la cuenca de 1 748 km² (Figura 1).

Figura 1. Ubicación de la cuenca Río Grande de Morelia, Michoacán, México.

Información utilizada

El modelo digital de elevación (MDE) utilizado es de resolución de píxel de 15 m, de escala 1:50 000 (INEGI, 2013).

La información meteorológica que se usó proviene de la red de Estaciones Meteorológicas Convencionales (EMC) del Servicio Meteorológico Nacional (SMN). Para este trabajo se consideraron 34 EMC, de las cuales se obtuvo el registro diario de la precipitación desde 1923 hasta 2015 y su ubicación, teniendo un promedio de datos faltantes en las serie de 0.48% (SMN, 2017).

Metodología

La metodología que se aplicó en la presente investigación se expone en la Figura 2.

Figura 2. Diagrama para el cálculo de los índices de concentración (CI) por subcuenca en la cuenca del Río Grande de Morelia.

Delimitación de la cuenca hidrológica

Se delimitaron las cuencas a partir del Continuo de Elevación Mexicano (CEM 3.0) proporcionado por INEGI (2013), y utilizando la extensión de Soil and Water Assessment Tool. Se delimitó la cuenca del Río Grande de Morelia (Winchell, Srinivasan, Di Luzio, & Arnold, 2013) (Figura 3).

Figura 3. Localización de las estaciones meteorológicas convencionales en la cuenca del Río Grande, Morelia, Michoacán, México.

Selección, ubicación y georreferenciación de EMC

De la base de datos se extrajo la ubicación geográfica de cada estación meteorológica convencional, utilizando las que se localizan dentro y las más cercanas a la cuenca del Río Grande de Morelia, como se describe en la Figura 3.

Colección de la información de precipitación diaria del registro de las EMC

Se identificaron las 34 EMC, sus claves y nombres oficiales, condición de operación, georreferenciación y longitud de registro hasta 2015 (Tabla 1) (SMN, 2017). Estas EMC se ubicaron en un SIG (Figura 3).

Ni	Classe	Newbro	Utm (z	ona 14N)	Altitud	Años de	% de datos	
NUM.	Clave	Nombre	X	Ŷ	(msnm)	registro	faltantes	
1	16001	Acuitzio del Canje	253 909	2 157 711	2 200	1961-2008	0.37	
2	16004	Álvaro Obregón (Smn)	287 023	2 192 475	1 846	1964-1986	0.05	
3	16016	Carrillo Puerto	286 636	2 201 400	1 840	1969-2006	0.03	
4	16022	Cointzio	260 775	2 171 585	2 096	1940-2006	0.11	
5	16023	Copándaro de Galeana	268 243	2 201 079	1 840	1969-2001	0.01	
6	16028	Cuitzillo Grande	277 931	2 187 050	1 987	1969-2007	0.04	
7	16045	El Temazcal	295 018	2 173 989	2 220	1965-2014	0.06	
8	16049	Etúcuaro	267 190	2 144 739	1 690	1944-1988	0.01	
9	16052	Huingo	305 078	2 203 831	1 921	1941-2012	0.04	
10	16055	Jesús del Monte	274 421	2 174 360	2 180	1935-2014	0.29	
11	16080	Morelia (Obs)	271 139	2 179 754	1 913	1986-2014	0.07	
12	16081	Morelia	271 880	2 178 484	1 908	1947-2015	0.06	
13	16087	Pátzcuaro	226 111	2 160 051	2 140	1969-2015	0.01	

Tabla 1.	Datos	generales	de las	estaciones	meteorológica	s convencionales	utilizadas
			en	el estudio (SMN, 2017).		

Núm.	Clave	Nombre	Utm (z	ona 14N)	Altitud	Años de	% de datos
14	16091	Álvaro Obregón (Dge)	286 508	2 193 220	1 840	1966-2015	0.12
15	16096	Presa Malpaís	303 216	2 193 364	1 859	1944-2015	0.02
16	16105	Quirio	291 014	2 190 306	1 858	1963-2015	0.11
17	16114	San Miguel del Monte	276 184	2 170 862	1 965	1963-2013	0.24
18	16116	San Sebastián	296 657	2 194 976	1 836	1969-1991	0.00
19	16118	Santa Fe	232 000	2 177 316	2 203	1963-2014	0.04
20	16120	Santiago Undameo	256 661	2 169 179	2 130	1953-2007	0.03
21	16136	Tzitzio	298 196	2 166 418	1 565	1969-2014	12.41
22	16139	Villa Madero	261 961	2 146 652	2 097	1943-1984	0.40
23	16140	Villa Madero (CFE)	260 808	2 145 560	2 182	1943-1984	0.08
24	16145	Zinapécuaro	308 668	2 196 872	1 880	1923-2014	0.48
25	16146	Zirahuén	213 167	2 153 360	2 090	1947-2014	0.03
26	16188	Tiríndaro	212 702	2 187 987	2 002	1973-2003	0.11
27	16203	Escuela Secundaria Federal	199 989	2 159 575	1 387	1975-1982	0.05
28	16221	Fruticultores	310 023	2 198 457	1 986	1980-2005	0.02
29	16247	Capula	249 253	2 177 280	2 097	1981-2007	0.05
30	16254	Teremendo	240 396	2 189 406	2 188	1982-2014	0.42
31	16257	Santa Isabel de Ajuno	228 855	2 158 194	2 250	1982-1988	0.18
32	16512	El Colegio	271 796	2 187 774	1 880	1986-2014	0.14
33	11027	Irámuco	299 457	2 210 784	1 840	1929-1979	0.24
34	16253	Tanaco	177 252	2 185 364	2 140	1982-2014	0.14

La estación con mayor longitud de registro (91 años) es la 16145 Zinapécuaro (1923-2014) y la estación con menos años de registro (seis años) es la *n* 16257 Santa Isabel de Ajuno (1982-1988).

Cálculo de la Curva de Lorenz

El cálculo de los índices de concentración se realizó utilizando como base el cálculo y la construcción de la Curva de Lorenz. Para calcular la Curva de Lorenz, Y es el porcentaje acumulado de precipitación, al que contribuye el porcentaje acumulado de días X, en los que tuvo lugar ese valor de precipitación (Martín-Vide, 2004).

A partir de esta información de precipitación diaria de cada EMC se describen variables como:

i = índice del valor de precipitación diaria observada con el valor I_i ; adimensiona; i = 1 a NI, número de valores definidos para el registro reducido.

 I_i = valores asignados de precipitación diaria *i*, mm.

 F_i = frecuencia de la precipitación diaria que se presenta con el valor I_i en el registro reducido.

 FA_i = frecuencia acumulada de N_i :

$$FA_1 = F_1$$
, para $i = 1$ (1)
 $FA_i = FA_{i-1} + F_i$, para $i > 2$ (2)

 FP_i = frecuencia de la precipitación diaria con que se presenta el valor I_i en el registro reducido, %.

FT = total de frecuencias observadas:

$$FT = \sum_{i=1}^{i=NI} F_i$$

$$X_i = \frac{FA_i}{FT} * 100$$
(3)

 P_i = precipitación que se presenta en cada valor I_i :

$$P_i = I_i * F_i \tag{5}$$

 PA_i = precipitación acumulada en N_i :

$$PA_1 = P_1, \text{ para } i = 1$$
 (6)
 $PA_i = PA_{i-1} + P_i, \text{ para } i > 2$ (7)

 FP_i = precipitación diaria con que se presenta el valor I_i en el registro reducido, %:

PT = total de precipitación observada:

$$PT = \sum_{i=1}^{i=NI} P_i$$

$$Y_i = \frac{PA_i}{PT} * 100$$
(8)
(9)

Cálculo del Índice de Concentración de la Precipitación Diaria (CI)

Martín-Vide (2004) propuso el índice de concentración (CI, por sus siglas inglés), como una aproximación de la representación numérica de las diferencias mostrada por las curvas de Lorenz (Figura 4). En este caso se utiliza para estimar la importancia de los días lluviosos con respecto al total de lluvia acumulada en una serie temporal y determinar así el impacto relativo de la precipitación diaria, para evaluar el peso de las precipitaciones máximas diarias registradas con respecto al total.

Martín-Vide (2004) asocia estas curvas con funciones de tipo exponencial:

$$Y = aXe^{bX} \tag{10}$$

donde *a* y *b* son parámetros de la curva de Lorenz correspondiente.

Para determinar los valores de a y <u>b</u> de la ecuación, Martín-Vide (2004) obtuvo las relaciones siguientes:

$$ln(a) = \frac{\sum X_i^2 \sum \ln Y_i + \sum X_i \sum X_i \ln X_i - \sum X_i^2 \sum \ln X_i - \sum X_i \sum X_i \ln Y_i}{N \sum X_i^2 - (\sum X_i)^2}$$
(11)

$$b = \frac{N \sum X_i \ln Y_i + \sum X_i \sum \ln X_i - N \sum X_i \ln X_i - \sum X_i \sum \ln Y_i}{N \sum X_i^2 - (\sum X_i)^2}$$
(12)

La integral es el área, *A*, definida bajo la curva de Lorenz entre 0 y 100 (Figura 4):

$$A = \int_0^{100} aX e^{bX} dX$$
 (13)

. . .

$$A = \left[\frac{a}{b}e^{bX}\left(X - \frac{1}{b}\right)\right]_{0}^{100}$$
(14)

Figura 4. Curva de Lorenz de la concentración de la precipitación diaria en la estación Irámuco (1929-1979).

El área *S* es el área bajo la línea de equidistribución (45°), donde CI = 0 (100 * 100 / 2 = 5 000) y *A* es:

S = 5000 - A

(15)

El índice de concentración (CI) se define como la proporción entre *S* y el área bajo la línea de equidistribución (Figura 4):

$$CI = \frac{S}{5000}$$

(16)

Los *CI* se calcularon para las 34 estaciones meteorológicas convencionales (Tabla 2 y Figura 5).

Núm.	Clave	Nombre	а	b	Α	S	CI	Precipitación (25%)
1	16001	Acuitzio del Canje	0.045	0.030	1964.25	3035.75	0.607	68.29
2	16004	Álvaro Obregón (SMN)	0.112	0.022	2431.96	2568.04	0.514	57.68
3	16016	Carrillo Puerto	0.135	0.020	2385.37	2614.63	0.523	62.81
4	16022	Cointzio	0.096	0.023	2349.57	2650.44	0.530	65.32
5	16023	Copándaro de Galeana	0.079	0.025	2369.12	2630.89	0.526	60.37
6	16028	Cuitzillo Grande	0.067	0.027	2304.40	2695.60	0.539	61.92
7	16045	El Temazcal	0.085	0.024	2360.11	2639.89	0.528	59.65
8	16049	Etúcuaro	0.082	0.025	2410.67	2589.33	0.518	59.10
9	16052	Huingo	0.059	0.028	2286.86	2713.14	0.543	61.30
10	16055	Jesús del Monte	0.108	0.023	2604.31	2395.69	0.479	53.86
11	16080	Morelia (Obs)	0.033	0.034	2022.81	2977.19	0.595	67.34
12	16081	Morelia	0.116	0.020	2114.08	2885.92	0.577	65.48
13	16087	Pátzcuaro	0.049	0.030	2137.12	2862.89	0.573	64.09
14	16091	Álvaro Obregón (Dge)	0.058	0.028	2257.55	2742.45	0.548	62.75
15	16096	Presa Malpaís	0.059	0.028	2279.18	2720.82	0.544	61.52
16	16105	Quirio	0.042	0.032	2133.01	2866.99	0.573	64.95
17	16114	San Miguel del Monte	0.077	0.026	2481.04	2518.96	0.504	57.18
18	16116	San Sebastián	0.061	0.028	2272.03	2727.97	0.546	62.33
19	16118	Santa Fe	0.083	0.025	2481.03	2518.97	0.504	55.10
20	16120	Santiago Undameo	0.071	0.026	2239.28	2760.72	0.552	63.10
21	16136	Tzitzio	0.049	0.030	2175.95	2824.05	0.565	64.88
22	16139	Villa Madero	0.064	0.028	2319.12	2680.88	0.536	60.34
23	16140	Villa Madero (Cfe)	0.061	0.028	2272.03	2727.97	0.546	60.46
24	16145	Zinapécuaro	0.081	0.025	2430.13	2569.87	0.514	57.22
25	16146	Zirahuén	0.097	0.024	2622.23	2377.78	0.476	52.44

Tabla 2. Cálculo del índice de concentración de la precipitación diaria y del último
cuartil de días más lluviosos de 34 EMC en la cuenca del Río Grande de Morelia.

Núm.	Clave	Nombre	а	b	A	S	CI	Precipitación (25%)
26	16188	Tiríndaro	0.051	0.029	2176.01	2823.99	0.565	64.77
27	16203	Escuela Secundaria Federal	0.063	0.029	2569.25	2430.75	0.486	57.44
28	16221	Fruticultores	0.044	0.032	2375.23	2624.77	0.525	60.62
29	16247	Capula	0.061	0.028	2312.15	2687.85	0.538	61.57
30	16254	Teremendo	0.093	0.024	2501.80	2498.21	0.500	55.78
31	16257	Santa Isabel de Ajuno	0.048	0.030	2248.28	2751.72	0.550	63.70
32	16512	El Colegio	0.045	0.031	2108.32	2891.68	0.578	66.15
33	11027	Irámuco	0.044	0.031	2185.41	2814.59	0.563	63.53
34	16253	Tanaco	0.067	0.028	2434.76	2565.24	0.513	58.26

Figura 5. Curvas de concentración de la precipitación diaria en 34 EMC de la cuenca del río Grande, Morelia, Michoacán.

Para calcular la precipitación del último cuartil (25%) (Tabla 3) de los días más lluviosos, $Ppd_{25\%}$ en porcentaje, se utilizó la ecuación (17), donde:

 $PT_{25\%}$ = volumen en mm que aporta 25% de los días más lluviosos y *PT* en mm totales de la lluvia observada con la ecuación (8):

$$Ppd_{25\%} = \frac{PT_{25\%}}{PT} * 100 \tag{17}$$

i	I,	Fi	FAi	Fi	X _i = FAi/FT * 100	$\mathbf{P}_{i} = \mathbf{I}_{i} * \mathbf{F}_{i}$	PAi	P_i	Y _i = PA _i / PT * 100
	mm	Frec. en I _i	Frec. acum en <i>I</i> i	Frec. en I _i %	Frec. acum. en <i>I</i> ; %	Prec. en <i>I_i</i> mm	Prec. acum. en I _i mm	Prec. en <i>I_i</i> %	Prec. acum. en I _i %
1	0.1	66	66	1.72	1.72	6.6	6.6	0.02	0.02
2	0.2	127	193	3.31	5.03	25.4	32.0	0.09	0.11
3	0.3	75	268	1.96	6.99	22.5	54.5	0.08	0.18
4	0.4	61	329	1.59	8.58	24.4	78.9	0.08	0.26
5	0.5	80	409	2.09	10.66	40.0	118.9	0.13	0.40
6	0.6	27	436	0.70	11.37	16.2	135.1	0.05	0.45
352	60.0	1	3,833	0.03	99.92	60.0	29,598.9	0.20	99.30
353	65.0	1	3,834	0.03	99.95	65.0	29,663.9	0.22	99.52
354	65.9	1	3,835	0.03	99.97	65.90	29,729.8	0.22	99.74
355	77.2	1	3,836	0.03	100.00	77.20	29,807.0	0.26	100.00
	Suma	3,836	1,078,505	100.00				100.00	

Tabla 3. Cálculo de la curva de Lorenz, estación 11027 Irámuco, Michoacán, México.

Resultados y discusión

Los resultados se presentan mediante los siguientes subtemas: cálculo de la curva de Lorenz para cada EMC; cálculo del índice de concentración de la precipitación diaria para cada EMC; clasificación de las subcuencas a partir del CI; clasificación de torrencialidad de acuerdo con el CI en la cuenca, y la asociación del CI con el clima.

Cálculo de la Curva de Lorenz para cada EMC

El proceso aplicado se ilustra con la información de la precipitación diaria, inscrita en la estación 11027 Irámuco, que inició su registro el 1º de septiembre de 1929, al último reportado el 31 de agosto de 1979 dando un total de 15 709 datos.

Los datos de precipitación diaria se ordenaron de menor a mayor; se excluyeron los datos de no precipitación (cero o no disponibles), lo que resultó en un registro reducido de precipitación diaria, $Prdr_j$, en el que j = 1 es el valor mínimo y j = NJ es el máximo.

Para estimar la frecuencia de $Prdr_j$ en I_i se asignaron valores a Ii, i = 1 para su valor mínimo e i = NI, para su valor máximo; en este caso, $I_1 = 0.1$ y $I_{NI} = 72.2$, respectivamente (355 valores). El valor de precipitación 0.1 mm en el registro reducido de la estación se presenta en 66 días; el valor de 0.2 mm se presenta en 127 días, y así sucesivamente, hasta llegar al valor de 77.2 mm, que se muestra en sólo una ocasión. El cálculo de la curva de Lorenz para la EMC 11027 Irámuco se presenta en la Tabla 3 y la curva en la Figura 4.

Este cálculo se realizó para las 34 estaciones meteorológicas convencionales, teniendo cada una de ellas su propia gráfica de Lorenz (Figura 5).

En la Figura 5 se muestran las curvas de Lorenz para las 34 estaciones meteorológicas. Si se analizan los elementos de las áreas *A*, *S* y *CI*, son los mismos elementos que presentan Sarricolea y Martín-Vide (2012).

Cálculo del Índice de Concentración de la precipitación diaria, *CI*, por cada EMC

El resultado de la aplicación de las variables de las ecuaciones (16) y (17) para cada estación meteorológica convencional se expone en la Tabla 3.

Los parámetros *a* y *b* variaron de un máximo de 0.134 a un mínimo de 0.033, y de máximo de 0.034 a un valor mínimo de 0.020, respectivamente; rango de valores que también presentan Espinoza *et al.* (2013), Martín-Vide (2004), y Benhamrouche y Martín-Vide (2012). Los valores de *A* de 2 622.225 a 1 964.249; los de *S* de 3 035.751 a 2 377.775, y los valores de *CI* de 0.476 a 0.607; estos valores de *CI*, si se comparan con los obtenidos por Monjo y Martín-Vide (2016), se observa un valor de *CI* = 0.6 para las latitudes de 19° 42′, que se presenta en los mapas mundiales y donde se aprecia la zona de Morelia, Michoacán; los valores de la precipitación de 25% de los días más lluviosos variaron de 52.44 a 68.29%.

Se aprecia en las curvas de concentración la estación 16146 Zirahuén con un CI = 0.4756 y es la curva que está más cercana a la línea de equidistribución, donde CI = 0; la estación 16001 Acuitzio del Canje, con un valor CI = 0.6072 es la más alejada, donde CI = 1.

Se comparó el índice de concentración de la precipitación diaria, CI y la precipitación de 25% de los días más lluviosos, encontrando una relación lineal (Figura 6).

Figura 6. Relación entre el índice de concentración y la precipitación de 25% de los días más lluviosos.

Para valores bajos de *CI* (0.476), el porcentaje de la precipitación del último cuartil de los días más lluviosos es bajo (52.4%); en caso contrario, para valores altos de *CI* (0.607), los valores altos de porcentaje de 25% de los días más lluviosos (68.29%); eso permite conocer la torrencialidad desde un sentido físico, donde a partir de 25% de los días más lluviosos, aporta 68.29% del total de la lluvia registrada; Martín-Vide (2004) realizó este análisis con el CI y 25% de los días más lluviosos, encontrando un mejor contraste en la regionalización y en el análisis de los datos.

Clasificación de las subcuencas a partir del CI

Primero se delimitó cada una de las subcuencas, se generaron las isopletas de CI y se calculó el CI por subcuencas.

Delimitación de las subcuencas

Se realizó la delimitación de las subcuencas a partir del modelo de elevación. Las subcuencas se delimitaron utilizando una superficie mínima de 500 ha, resultando 23 subcuencas (ver Figura 3).

Generación de isopletas de CI

De los resultados de CI para cada estación meteorológica convencional se importaron los datos en un SIG y se generó un mapa, interpolando para obtener la distribución espacial del CI, con separación de CI = 0.01, a la que se le genera una capa tipo ráster de las microcuencas (Figura 7).

Figura 7. Isopletas de índice de concentración de precipitación diaria (CI) para la cuenca del Río Grande de Morelia.

Cálculo del CI por subcuencas

Utilizando el *software ArcMap* (ESRI, 2016), se utilizó la herramienta de estadística zonal. Se introduce como datos de entrada la capa de las subcuencas y en el ráster los datos de la malla interpolada del CI, obteniendo el valor promedio del CI para cada subcuenca (Figura 8).

Figura 8. Valores promedio de CI por subcuenca.

Los valores en las subcuencas van desde 0.5195 hasta 0.5851, éstos se encuentran en el mismo rango de 0.6, obtenidos por Monjo y Martín-Vide (2016). Los valores más altos de CI en las cuencas aguas arriba de la presa Cointzio, y los valores mínimos cercanos a la microcuenca del Río Chiquito que de acuerdo con la nomenclatura que se utilizó es la cuenca con clave SC10 (Tabla 4).

Núm.	Clave	Área (km²)	CI	Nivel
1	SC1	62.08	0.585	Altamente torrencial
2	SC2	122.14	0.582	Altamente torrencial
3	SC3	133.28	0.564	Altamente torrencial
4	SC4	16.61	0.569	Altamente torrencial
5	SC5	159.40	0.548	Torrencial
6	SC6	28.88	0.562	Altamente torrencial

Tabla 4. Valores de CI por subcuenca.

Núm.	Clave	Área (km²)	CI	Nivel
7	SC7	17.76	0.551	Torrencial
8	SC8	81.77	0.562	Altamente torrencial
9	SC9	111.09	0.562	Altamente torrencial
10	SC10	85.52	0.520	Medio torrencial
11	SC11	61.65	0.550	Torrencial
12	SC12	18.09	0.554	Torrencial
13	SC13	99.62	0.539	Torrencial
14	SC14	43.74	0.570	Altamente torrencial
15	SC15	80.83	0.522	Medio torrencial
16	SC16	37.86	0.543	Torrencial
17	SC17	74.22	0.536	Medio torrencial
18	SC18	124.48	0.561	Altamente torrencial
19	SC19	96.10	0.534	Medio torrencial
20	SC20	19.01	0.534	Medio torrencial
21	SC21	50.01	0.550	Torrencial
22	SC22	73.82	0.551	Torrencial
23	SC23	150.99	0.552	Torrencial

Clasificación de torrencialidad de acuerdo con el CI en la cuenca

Con la finalidad de darle un sentido físico a los valores de CI de las subcuencas y de la cuenca en sí, a partir de los resultados de los valores del CI reportados en la literatura (Monjo & Martín-Vide, 2016), valores que oscilan en el mundo de 0.38 a 0.87 y los obtenidos en este estudio, se propone una forma de comparar niveles de torrencialidad dentro de una cuenca; es decir, cuál es más torrencial que otra. Por lo tanto, a partir del índice de concentración obtenido de cada subcuenca, se realizó un histograma para observar la distribución que presentan los CI en la cuenca, obteniendo una forma de distribución normal. Se aplicó una prueba de normalidad (Shapiro Wilks), encontrando una diferencia significativa del indicador de la prueba cercano a 1, por lo que es

aceptable su distribución normal y el *p-value* obtenido es mayor al alfa de tablas de 0.005. Considerando la normalidad de los datos se proponen cuatro niveles de torrencialidad en la cuenca del Río Grande de Morelia, a partir del valor de CI, para ello se utilizaron los cuantiles de 0%(0.476), 25%(0.515), 50%(0.538), 75%(0.560) y 100%(0.607), que corresponden a los límites de cada clase (Tabla 5).

Índice de concentración	Grado de torrencialidad
0.476-0.515	Bajo torrencial
0.515-0.538	Medio torrencial
0.538-0.560	Torrencial
0.560-0.607	Altamente torrencial

Tabla 5. Clasificación del índice de concentración para determinar el grado detorrencialidad de la cuenca del Río Grande de Morelia.

Se calculó el promedio ponderado para la cuenca del Río Grande de Morelia, obteniendo un valor de CI = 0.5524 de acuerdo con la clasificación propuesta es del tipo torrencial.

Asociación del CI con el clima

Para conocer el comportamiento de las subcuencas es necesario relacionarla con el tipo de clima que predomina en la región de estudio.

Los valores promedios de CI en las 23 subcuencas van desde 0.5195 hasta 0.5851. Los valores mayores de CI se presentan en las subcuencas de la parte alta de la cuenca, aguas arriba de la presa Cointzio, las que se ubican en climas del tipo $C(E)(w_2)(w)$ semifrío subhúmedo, el más húmedo de los subhúmedos con lluvias en verano.

El mes de máxima precipitación es de mayo a octubre, y recibe por lo menos 10 veces más precipitación que el mes más seco del año. El porcentaje de lluvia invernal es < 5% del total anual; la precipitación del mes más seco es < 40 mm, con una temperatura media anual que oscila entre 5 y 12 °C.

Los valores de CI son entre 0.60 y 0.55 en subcuencas aguas abajo de la presa Cointzio, con climas del tipo $C(w_2)(w)$ templado subhúmedo, el más húmedo de los subhúmedos, con lluvias en verano. El mes de máxima precipitación se da de mayo a octubre, y recibe por lo menos 10 veces más precipitación que el mes más seco del año. El porcentaje de lluvia invernal es < 5%; la precipitación del mes más seco es < 40 mm, con una temperatura media anual que oscila entre 12 y 18 °C.

Los valores más bajos del CI son entre 0.55 y 0.52. Se presentan en el tipo de clima $C(w_1)(w)$, que corresponde a templado subhúmedo, con una humedad media, con lluvias en verano. El mes de máxima precipitación se da en el periodo mayo-octubre, y recibe por lo menos 10 veces mayor cantidad de precipitación que el mes más seco del año. El porcentaje de lluvia invernal es < 5%; la precipitación del mes más seco es < 40 mm, con una temperatura media anual que oscila entre 12 y 18 °C.

Los valores más bajos de CI son entre 0.52 y 0.50. Se presentan en el tipo de clima $C(w_0)(w)$, que es templado, el menos húmedo de los subhúmedos con lluvias en verano. El mes de máxima precipitación se tiene de mayo a octubre, y recibe por lo menos 10 veces más precipitación que el mes más seco del año. El porcentaje de lluvia invernal es < 5%; la precipitación del mes más seco es < 40 mm, con una temperatura media anual que oscila entre 12 y 18 °C (INEGI, 2000).

Conclusiones

Mediante el cálculo del índice de concentración de la precipitación diaria en la cuenca del Río Grande de Morelia es posible conocer la agresividad o torrencialidad de la lluvia.

Aplicando este procedimiento, se puede apreciar la distribución de la lluvia sobre una cuenca, con base en sistemas de información geográfica.

Una de las aplicaciones puntuales que es posible obtener de esta investigación es diferenciar qué subcuencas son más torrenciales que

otras, y con ello proponer la instrumentación de cuencas (estaciones hidrométricas).

En función de los valores del CI obtenidos en este trabajo se propone una escala de cuartiles para clasificar la agresividad o torrencialidad de la precipitación en la cuenca y subcuencas del Río Grande de Morelia.

El valor de CI obtenido en la cuenca del río Grande de Morelia CI = 0.5524 es de acuerdo con la clasificación propuesta de tipo torrencial. Lo cual indica que se trata de una cuenca en la que pueden presentarse eventos extraordinarios que provoquen inundaciones en las partes bajas de la cuenca, como los que se han registrado a lo largo de su historia y el más reciente de 2015, dejando grandes problemas en la zona urbana de Morelia (Conagua, 2016).

En el caso de las subcuencas, los valores promedio de CI en las 23 subcuencas van desde 0.5195 hasta 0.5851. El valor de CI mayor se tiene en las subcuencas de la parte alta de la cuenca, arriba de la presa Cointzio, las que se ubican en climas del tipo $C(E)(w_2)(w)$, semifrío subhúmedo y $C(w_2)(w)$ templado subhúmedo. Los valores más bajos de CI se localizan en climas del tipo $C(w_1)(w)$ y $C(w_0)(w)$, que es del tipo templado, pero en la clasificación de los menos subhúmedos.

Con este procedimiento se pretende tener una herramienta que contribuya en el análisis hidrológico de las cuencas susceptibles a inundaciones, y que sea un indicador de la agresividad o torrencialidad de cuencas y subcuencas aportadora de la precipitación, que al final se traduce en escurrimientos extraordinarios.

Referencias

- Alijani, B., O'Brien, J., & Yarnal, B. (2008). Spatial analysis of precipitation intensity and concentration in Iran. *Theoretical and Applied Climatology*, 94(1-2), 107-124. Recuperado de https://doi.org/10.1007/s00704-007-0344-y
- Benhamrouche, A. (2014). Análisis de la concentración diaria de la precipitación en la cuenca del Mediterráneo Occidental. Barcelona, España: Universitat de Barcelona. Recuperado de http://diposit.ub.edu/dspace/bitstream/2445/64206/1/Aziz_Benham rouche_TESIS.pdf
- Benhamrouche, A., Boucherf, D., Hamadache, R., Bendahmane, L., Martin-Vide, J., & Teixeira N., J. (2015). Spatial distribution of the

daily precipitation concentration index in Algeria. *Natural Hazards and Earth System Sciences*, 15, 617-625. Recuperado de https://doi.org/10.5194/nhess-15-617-2015

- Benhamrouche, A., & Martín-Vide, J. (2011). Distribución espacial de la concentración diaria de la precipitación en la provincia de alicante. *Investigaciones Geográficas*, 56, 113-129.
- Benhamrouche, A., & Martín-Vide, J. (2012). Avances metodológicos en el análisis de la concentración diaria de la precipitación en la España peninsular. Anales de Geografia de La Universidad Complutense, 32(1), 11-27. Recuperado de https://doi.org/10.5209/rev-AGUC.2012.v32.n1.39306
- Conagua, Comisión Nacional del Agua. (2016). Actualización y ampliación del estudio control de avenidas en el sistema Río Grande-Río Chiquito y principales drenes, afluentes e incorporaciones de escurrimientos en la ciudad de Morelia y zona conurbada desde la presa de Cointzio hasta su desembocadura. Comisión Nacional del Agua Dirección Local Michoacán.
- Cortesi, N., González-Hidalgo, J. C., Brunetti, M., & Martín-Vide, J. (2012). Daily precipitation concentration across Europe 1971-2010. *Natural Hazards and Earth System Science*, 12, 2799-2810. Recuperado de https://doi.org/10.5194/nhess-12-2799-2012
- De Luis, M., González-Hidalgo, J. C., & Sánchez, J. R. (1996). Análisis de la distribución espacial de la concentración diaria de precipitaciones en el territorio de la Comunidad Valenciana. *Cuadernos de Geografía*, 59, 47-62.
- Espinoza, S. P., Herrera, O. M., & Araya, E. C. (2013). Análisis de la concentración diaria de las precipitaciones en Chile central y su relación con la componente zonal (subtropicalidad) y meridiana (orográfica). *Investigaciones Geográficas Chile*, 45, 37-50.
- ESRI, Environmental Systems Research Institute. (2016). *ArcGIS Desktop: Release 10.4. Redlands CA*. Environmental Systems Resource Institute.
- Hamzah, F. M., Zainal, N., & Jaafar, O. (2016). Daily precipitation concentration index in Bangi, Malaysia. *International Journal of Applied Environmental Science*, 11(6), 1537-1548.
- Huang, S., Huang, Q., Chen, Y., Xing, L., & Leng, G. (2016). Spatialtemporal variation of precipitation concentration and structure in the Wei River Basin, China. *Theoretical and Applied Climatology*, 125(1-

2), 67-77. Recuperado de https://doi.org/10.1007/s00704-015-1496-9

- INEGI, Instituto Nacional de Estadística y Geografía. (2000). Diccionario de Datos Climáticos, Escalas 1:250 000 y 1:1 000 000 (Vectorial). Base de Datos Geográficos. Recuperado de http://www.inegi.org.mx/geo/contenidos/recnat/clima/doc/dd_clima ticos_1m_250k.pdf
- INEGI, Instituto Nacional de Estadística y Geografía. (2013). Continuo de Elevaciones Mexicano 3.0 (CEM 3.0). Recuperado de http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/c ontinuoelevaciones.aspx
- Lana, X., Burgue, A., Martínez, M. D., & Serra, C. (2009). Una revisión de los análisis estadísticos de las precipitaciones diarias y mensuales en Cataluña. *Journal of Weather and Climate of the Western Mediterranean*, 6, 15-30. Recuperado de https://doi.org/10.3369/tethys.2009.6.02
- Li, X., Jiang, F., Li, L., & Wang, G. (2011). Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period Xinjiang, China. *International Journal of Climatology*, 31(11), 1679-1693. Recuperado de https://doi.org/10.1002/joc.2181
- Martín-Vide, J. (2004). Spatial distribution of a daily precipitation concentration index in peninsular Spain. *International Journal of Climatology*, 24, 959-971. Recuperado de https://doi.org/10.1002/joc.1030
- Martín-Vide, J., & Estrada-Mateu, J. (1992). Diferenciación regional de la España peninsular según la frecuencia relativa de los días con precipitación mayor o igual que 10 milímetros. *Papeles de Geografía*, 18, 31-38.
- Martín-Vide, J., & Llasat B.M. C. (2000). Las precipitaciones torrenciales en Cataluña. *Serie Geográfica*, 9, 17-26. Recuperado de https://core.ac.uk/download/pdf/58902370.pdf
- Martín-Vide, J., Sánchez-Lorenzo, A., López-Bustins, J. A., Cordobilla, M. J., García-Manuel, A., & Raso, J. M. (2008). Torrential rainfall in northeast of the Iberian Peninsula: Synoptic patterns and WeMO influence. Advances in Science and Research, 2, 99-105.
- Meseguer-Ruiz, Ó., Martín-Vide, J., Olcina-Cantos, J., & Sarricolea-Espinoza, P. (2014). La distribución espacial de la fractalidad

temporal de la precipitación en la España peninsular y su relación con el Índice de Concentración. *Investigación Geográfica Chile*, 48, 73-84.

- Monjo, R., & Martín-Vide, J. (2016). Daily precipitation concentration around the world according to several indices. *International Journal* of Climatology, 36, 3828-3838. Recuperado de https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.4596
- Sarricolea, E. P., & Martín-Vide, J. (2012). Distribución espacial de las precipitaciones diarias en Chile mediante el índice de concentración a resolución de 1 mm, entre 1965-2005. En: *Cambio climático, extremos e impactos* (pp. 631-639). Salamanca, España: Publicaciones de la Asociación Española de Climatología.
- Sarricolea, E. P., & Romero, A. H. (2015). Variabilidad y cambios climáticos observados y esperados en el altiplano del norte de Chile. *Revista de Geografia Norte Grande*, 62, 169-183.
- Shi, P., Qiao, X., Chen, X., Zhou, M., Qu, S., Ma, X., & Zhang, Z. (2014). Spatial distribution and temporal trends in daily and monthly precipitation concentration indices in the upper reaches of the Huai River, China. *Stochastic Environmental Research and Risk Assessment*, 28(2), 201-212. Recuperado de https://doi.org/10.1007/s00477-013-0740-z
- SMN, Servicio Meteorológico Nacional. (2017). *Estaciones climatológicas* 2016. Recuperado de http://smn.cna.gob.mx/tools/RESOURCES/estacion/EstacionesClima tologicas.kmz
- Suhaila, J., & Aziz, J. A. (2012). Spatial analysis of daily rainfall intensity and concentration index in peninsular Malaysia. *Theoretical and Applied Climatology*, 108(1-2), 235–245. Recuperado de https://doi.org/10.1007/s00704-011-0529-2
- Vargas, A., Santos, A., Cárdenas, E., & Obregón, N. (2011). Análisis de la distribución e interpolación espacial de las lluvias en Bogotá, Colombia. *Dyna*, 78(167), 151-159.
- Velasco-Martínez, L., Mendoza-Palacios, J. de D., Campos-Campos, E., & Castillo-Bolainas, H. (2011). *Análisis espacial de las lluvias en la subcuenca del Bajo Grijalva*.
- Winchell, M., Srinivasan, R., Di Luzio, M., & Arnold, J. (2013). SWAT Help. Texas Agrilife Research. USA: United States Department of Agriculture, Agricultural Reseach Service.

- Zhang, Q., Xu, C. Y., Gemmer, M., Chen, Y. D., & Liu, C. (2009). Changing properties of precipitation concentration in the Pearl River basin, China. *Stochastic Environmental Research and Risk Assessment*, 23, 377-385. Recuperado de https://link.springer.com/article/10.1007/s00477-008-0225-7
- Zubieta, R., & Saavedra, M. (2013). Distribución espacial del índice de concentración de precipitación diaria en los Andes centrales peruanos: valle del río Mantaro. *Revista ECIPerú*, 9(2), 61-70.
- Zubieta, R., Saavedra, M., Silva, Y., & Giráldez, L. (2016). Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru. *Stochastic Environmental Research and Risk Assessment*, 31(6), 1305-1308 Recuperado de https://doi.org/10.1007/s00477-016-1235-5