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Abstract

Gonzadlez-Leiva, E.,, Ibdnez-Castillo, L. A., Valdés, J. B.,
Viézquez-Pefia, M. A., & Ruiz-Garcia, A. (julio-agosto, 2015).
Pronéstico de caudales con Filtro de Kalman Discreto en el
rio Turbio. Tecnologia y Ciencias del Agua, 6(4), 5-24.

Se propuso la implementacién del algoritmo del Filtro de
Kalman Discreto (DKF) junto con un modelo autorregresivo
con entrada exégena (ARX) para realizar el prondstico
de caudales a corto plazo con 24, 48, 72 y 96 horas de
anticipacién en la cuenca del rio Turbio, localizada en el
estado de Guanajuato y parte del estado de Jalisco, México,
vulnerable a inundaciones durante los periodos de lluvias
que se presentan normalmente en la zona. La informacién de
precipitaciéon y caudal disponible con las que se realizaron
los prondsticos corresponde a las series de los afios 2003 y
2004. Los resultados obtenidos indican que los prondsticos
realizados un paso hacia adelante, es decir, con un tiempo de
24 horas de anticipacién, presentaron los mejores ajustes en
términos de Nash-Sutcliffe, MSE y RMSE, que los prondsticos
realizados a 48, 72 y 96 horas de anticipacién.

Palabras clave: Filtro de Kalman, modelos autorregresivos,
prondsticos de caudales a corto plazo.

Introduccion

Como consecuencia de la variabilidad del clima
(IPCC, 2007; Mendoza et al., 2009; Montero-
Martinez, Ojeda-Bustamante, Santana-Septlveda,
Prieto-Gonzdlez, & Lobato-Sénchez, 2013) y
de su previsible influencia en la magnitud de
la gravedad, la frecuencia y el impacto de las
avenidas y sequias, durante los dltimos afios ha
aumentado la importancia de las predicciones
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como estimaciones de los estados futuros de un
fenémeno hidrolégico. Dichas predicciones son
esenciales para el funcionamiento eficaz de la
infraestructura hidrica y para la atenuacién de
desastres naturales provocados segtin las condi-
ciones ambientales (WMO, 2009).

De acuerdo con Valdés, Mejia-Veldzquez,
& Rodriguez-Iturbe (1980), en la prediccién de
caudales se puede postular una relacién causal
entre la precipitacién en varios puntos de la
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cuenca, a diferentes instantes de tiempo y un
caudal medio en un punto de salida para un dia
determinado. Esta relacién causal, denominada
funcién de respuesta, puede ser representada
como un modelo de caja negra. Los modelos
autorregresivos han sido ampliamente usados
en la hidrologia y los recursos hidricos desde
inicios de la década de 1960 para la modelacién
anual y peridédica en series de tiempo de tipo
hidrolégico.

La aplicaciéon de estos modelos ha sido
atractiva en la hidrologia; en especial, la forma
autorregresiva tiene dependencia del tiempo y
por la facilidad para ser usados (Salas, Delleur,
Yevjevich, & Lane, 1980; Box, Jenkins, & Reinsel,
2013). En los dltimos afios, el algoritmo del Filtro
de Kalman se ha propuesto para realizar el pro-
nostico de caudales en los sistemas hidroldgicos,
operado junto con modelos matemaéticos de
lluvia- escurrimiento en cuencas hidrogréficas
(Moradkhani, Sorooshian, Gupta, & Houser,
2005; Xie & Zhang, 2010; Lii et al., 2013; Morales-
Veldzquez, Aparicio, & Valdés, 2014; Abaza,
Anctil, Fortin, & Turcotte, 2014), haciendo én-
fasis en la estimacién 6ptima de los pardmetros
de estado de los modelos utilizados mediante
la técnica conocida como asimilaciéon de datos
(Moradkhani, DeChant, & Sorooshian, 2012; Liu
et al., 2012; Shi, Davis, Zhang, Duffy, & Yu, 2014;
Samuel, Coulibaly, Dumedah, & Moradkhani,
2014, Liu, et al., 2015; Yucel, Onen, Yilmaz, &
Gochis, 2015; Li, Ryu, Western, & Wang, 2015).
Sin embargo, para usar estos modelos se requie-
ren series continuas y completas de caudales,
algo que podrian no tener pafses en desarrollo,
como México. Segun Perevochtchikova (2013),
en las bases de datos a nivel climatolégico,
CLICOM, y de aguas superficiales, BANDAS,
que posee México, existe una problemadtica recu-
rrente: poca accesibilidad, marcadas diferencias
sectoriales y vacios en las series de tiempo, lo
que deriva en dificultades para su uso en las
tareas de comparacién y andlisis de evolucién
espacial y temporal, sistematizacién de datos,
y construccién de indicadores y de modelos a
escala local.

El Filtro de Kalman Discreto (DKF) fue pro-
puesto por Kalman (1960) como una solucién
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recursiva por el método de minimos cuadrados
al problema de filtrado lineal de datos discretos.
Es un procedimiento matemaético que opera por
medio de un mecanismo de prediccién y correc-
cién. Este algoritmo pronostica el nuevo estado
a partir de una estimacién previa, afiadiendo
un término de correcciéon proporcional al error
de prediccién, de tal forma que este dltimo es
minimizado estadisticamente. Por esta razén, si
se tiene conocimiento del sistema dindmico, las
estadisticas del sistema ruidoso, los errores de
medicién y las condiciones iniciales, se puede
estimar el estado para un sistema dindmico
(Gelb, 1974; Simon, 2001; Welch & Bishop, 2006).

El pronéstico de caudales en cuencas hi-
drograficas forma parte de los procedimientos
que permiten tomar decisiones con criterios
fundamentados en la planificacién del riesgo
que busca mitigar los impactos negativos oca-
sionados por las avenidas en campos especificos
de la hidrologia, como la regulacién de embalses
y la emisién de alertas tempranas ante inun-
daciones en zonas con presencia de poblacién
civil. En México, Morales-Veldzquez, Aparicio
y Valdés (2014) evaluaron la utilidad del algo-
ritmo del Filtro de Kalman Discreto (DKF) en
el pronéstico de avenidas, con fines de regular
los caudales en la presa Angel Corbino Corzo o
Peiiitas, perteneciente al sistema hidroeléctrico
Grijalva.

En el presente trabajo se propuso la imple-
mentacién del algoritmo del Filtro de Kalman
Discreto (DKF) junto con un modelo autorregre-
sivo con entrada exégena ARX para realizar el
pronéstico de caudales a corto plazo, con 24, 48,
72y 96 horas de anticipacién en la cuenca del rio
Turbio, localizada en el estado de Guanajuato y
parte del estado de Jalisco, México, vulnerable
a inundaciones durante los periodos de lluvias
registradas en la zona.

Materiales y métodos
Descripcion de la cuenca
La figura 1 muestra la localizacién y repre-

sentacién de la cuenca del rio Turbio, la cual
pertenece a la Regién Hidrolégica 12 Lerma-
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Figura 1. Localizacién de la cuenca del rio Turbio.

Santiago, ubicada en los estados de Guanajuato
y Jalisco, entre los 20° 32" 42” y los 21° 21’ 18”
de latitud norte, y entre los 101° 27’ 82” y los
102° 17 57” de longitud oeste. Las principales
poblaciones que se encuentran en la cuenca
son Ciudad de Ledn, San Francisco del Rincén,
Purisima de Bustos y Manuel Doblado. El drea
total de la cuenca es de 3 322 km? hasta la es-
tacion hidrométrica Las Adjuntas, ubicada en
los 20° 40" 32” de latitud norte y 101° 50" 40”
de longitud oeste, de los cuales 58.8% pertenece
al estado de Guanajuato y 41.2% corresponde
al estado de Jalisco. El parteaguas de la cuenca
tiene su maxima elevacion a los 2 670 msnm y
el punto de salida referenciado por la estacién
hidrométrica se encuentra a los 1 723 msnm.
La pendiente media de la cuenca es de 11%; el
cauce principal tiene un desnivel de 323 m y la
cuenca presenta un tiempo de concentracién de
21 h, respectivamente. La precipitacién media

anual es de 659 mm, segtin las normales clima-
tolégicas para el periodo 1981-2010 (SMN, 2014),
con un régimen de lluvias que inicia en el mes
de junio y termina en octubre, concentrdndose
en este periodo un 89% del total de las precipi-
taciones anuales, caracterizadas por ser intensas
y de corta duracién.

Las presas mds importantes dentro de la zo-
na descrita son El Palote y El Barrial. La primera
se encuentra en Ciudad de Leén y su propésito
es agua potable y control de avenidas, con una
capacidad méxima de 17 Mm?; la segunda se
ubica sobre San Francisco del Rincdn, disefiada
para el control de avenidas y riego, con una
capacidad de 55.26 Mm?®. Otras presas que se
destacan son Santa Efigenia, con capacidad de
42.75 Mm?; Jalpa Vieja, con 14.38 Mm?; Ciénaga
de Galvanes, con 11 Mm? y Potrerillos, con
15 Mm?; todas con doble propésito de riego y
control de avenidas (Conagua, 2014b).

ISSN 0187-8336 «

Tecnologia y Ciencias del Agua, vol. VI, num. 4, julio-agosto de 2015, pp. 5-24




Gonzalez-Leiva et al., Prondstico de caudales con Filtro de Kalman Discreto en el rio Turbio

Informacion climatoldogica

La informacién de precipitacion para alimentar
el modelo de prondstico se obtuvo de la base de
datos del CLICOM (SMN, 2014), utilizando las
series de los afios 2003 y 2004 a nivel diario, por
tener el mayor registro de informacién completa
para la cuenca. En el cuadro 1 se muestran un
total de 11 estaciones meteorolégicas distribui-
das sobre toda la superficie de la cuenca del rio
Turbio.

Informacion hidrométrica

Los caudales medios diarios se obtuvieron de
la base de datos del Banco Nacional de Aguas
Superficiales, BANDAS (Conagua, 2014a), para
la serie de los afios 2003 y 2004. En el cuadro 2 se
resumen los cuantiles para los gastos mdximos
registrados en la estacion hidrométrica Las
Adjuntas, segtin la Comisién Nacional de Agua
y reportados por Proteccién Civil Guanajuato
(2012).

Metodologia
Los modelos autorregresivos han sido amplia-

mente usados en la hidrologia y los recursos
hidricos desde inicios la década de 1960, para

Cuadro 2. Periodos de retorno para gastos maximos en la

estacién hidrométrica Las Adjuntas.

Periodo de retorno (afios) Caudal (m?/s)
2 44.35
5 84.60
10 111.24
20 136.8
50 169.88
100 194.67
500 251.96
1000 276.59

Fuente: Proteccién Civil Guanajuato (2012).

la modelacién anual y periédica en series de
tiempo de tipo hidrolégico. La aplicacién de
estos modelos ha sido atractiva en la hidrologia,
principalmente porque la forma autorregresiva
tiene dependencia del tiempo y por la facilidad
para su implementacién (Salas et al., 1980; Box
etal., 2013).

Se propuso la creacién de un modelo au-
torregresivo con entrada exégena ARX para
predecir los caudales medios con base en los
registros de series pasadas, obtenidos a partir
de la base de datos BANDAS (Conagua, 2014a)
para la estacion hidrométrica Las Adjuntas.
El modelo ARX relaciona las entradas con las
salidas del sistema mediante una ecuacién lineal

Cuadro 1. Estaciones meteoroldgicas en la cuenca del rio Turbio.

+
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< Cédigo estacién Nombre Municipio Estado Dependencia
z 11020 El Palote Leén Guanajuato SMN

j=3

E 11025 Hacienda de Arriba Ledn Guanajuato SMN/CEAG
g 11035 La Sandia Le6n Guanajuato SMN
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en diferencias con coeficientes constantes (Hsu,
Moradkhani, & Sorooshian, 2009):

na nb
yt+1 = Eaiytﬂ' +2l3]‘rt7/' +ef+] (1)
i=0 j=0

Donde y, y , son el caudal observado y la
lluvia en el tiempo ¢, el cual representa un dia;
e,,, es el término de error en la estimacion del
caudal; o, y B, son pardmetros, respectivamente.
Los indices na y nb especifican el ndmero de
observaciones previas de caudales y lluvias. Es
lo que serfa un modelo autorregresivo ARX (na,
nb).

Conocida la estructura general del modelo
ARX, la formulacién en espacio de estados se
convierte en una herramienta ttil para utilizar el
Filtro de Kalman en cualquiera de sus versiones.
La ecuacidn (1) puede representarse en forma de
espacio de estados como sigue:

x,,, =Ax, +Bu, +w, (2)
z, =Hx, +v,

donde x,_, es el caudal presente (no observado)
de tamario (n x 1); A es la matriz de pardmetros
a,, de tamano (n x n); x,, el caudal en el tiempo
k de tamarfio (n x 1); B, la matriz de pardmetros
exégenos B, de tamarfio (n x m); u_representa el
vector que contiene la precipitacién media regis-
trada en la cuenca para el tiempo k de tamafio
(m x 1); z,, el caudal medido en el tiempo k de
tamafio (m x 1); H, la matriz de transformacién
que mapea el vector de estados al dominio de
la medicién con dimensiones (1 x 1); w, y v, son
vectores que representan el ruido gaussiano en
el proceso y el ruido en la medicién para cada
observacion con tamafios (m x 1), de tal manera
que:

w, ~N(0,Q) ®3)
v, ~N(O,R)

Para el caso especifico de la matriz R de
covarianza de la perturbacién de la medicién,

ésta se definié de acuerdo con lo reportado
por Moralez-Veldazquez et al., 2014. La matriz
fue representada como a*q,, donde o es una
constante de proporcionalidad que representa
un error constante e igual a una fraccién del
caudal en el tiempo anterior (k - 1). El valor de
a en todos los casos tuvo un 5% con respecto al
caudal inmediatamente anterior; ese 5% es el
error que se cree comete la persona que mide los
caudales, es decir, el aforador. De acuerdo con la
formulacion de la ecuacién (2), la dindmica de
un sistema permite una representacién mas sen-
cilla, proporcionando descripciones estadisticas
del comportamiento del sistema (Gelb, 1974).

Los modelos en espacio de estados son
esencialmente una notacién conveniente para
abordar el manejo de un amplio rango de mo-
delos de series de tiempo. En la estimacién y
control de problemas, esta metodologia se basa
en modelos estocdsticos, dado el supuesto de la
naturaleza errénea de las mediciones (Ramirez,
2003).

Finalmente, se puede observar que el sistema
representado en la ecuacién (2) consiste de un
componente deterministico y un componente
estocdstico que reflejan incertidumbre en el
modelo (Lee & Singh, 1998).

De la ecuacién (3), Q y R pueden cambiar
en el tiempo, pero por lo general se suponen
constantes por simplicidad (Simon, 2001) y sus
valores esperados se pueden representar como
se sigue:

Q=E[wkw,f]

R=E[5,9; | (4)

De esta forma, el modelo ARX se representa
en espacio de estados, facilitando la aplicacién
del Filtro de Kalman para obtener los pronés-
ticos de caudal en el tiempo (k + 1) a partir de
la serie de caudales registrada en el tiempo (k),
incluyendo la precipitacién media diaria en la
cuenca como el componente de entrada exégeno
al modelo y siguiendo el esquema del algoritmo
representado en la figura 2 mediante estimado-
res de estados (Kim, 2011).
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Figura 2. Algoritmo para el Filtro de Kalman Discreto.
Fuente: Kim (2011).

Para crear el modelo ARX se programé
una rutina en Matlab®, utilizando el toolbox de
identificacién de sistemas para obtener el orden
del proceso autorregresivo segin el niimero de
términos representados en la ecuacién (1).

Teniendo en cuenta que los pardmetros
estimados por el modelo ARX pueden variar
en funcién de las épocas de mayor precipi-
tacion y /o de las variaciones abruptas en los
caudales, se estableci6é un periodo (P) a modo
de calibracién (“warming up”) para estimar los
pardmetros e iniciar el prondstico de caudales
en el tiempo (f,+ P).

Una vez definida la longitud del periodo, los
prondsticos se realizaron desde (f,+ P) hasta el
tiempo (f,+ 2P), recalculando los pardmetros del
modelo ARX para el periodo (2P), iniciando de
nuevo el pronéstico ahora desde (¢, + 2P) hasta
(t,+ 3P) y asi de modo sucesivo, tal como se
describe en la figura 3. De esta manera, la im-
plementacién del ARX+DKF se hizo dindmica y
con matrices de estado, que fueron variando en
cada periodo definido, disminuyendo el ruido
generado en el proceso representado como w,
en la ecuacion (2):

ISSN 0187-8336

x,,, = Ax, +Bu, +w, (2)

Con el propésito de encontrar diferencias en-
tre los prondsticos para L pasos hacia adelante,
es decir, con 24, 48, 72 y 96 horas de anticipacién,
fue ejecutada una rutina en Matlab® que utilizé
informacién del estado en el tiempo (k) para
avanzar, sin actualizar L pasos en la linea de
tiempo. Una vez llegada a la posicion L deseada,
se realiz6 la actualizacién del primer estado
pronosticado, como se describe en la figura 4. El
ciclo se realiz6 teniendo en cuenta los periodos
de calibracién de modelo ARX descritos en la
figura 3.

Para evaluar el ajuste de los prondsticos
realizados con respecto a los datos medidos
se calcularon las principales estadisticas segtin
Gupta, Kling, Yilmanz y Martinez (2009) para
la metodologia descrita anteriormente. El error
cuadrdtico medio MSE (Mood, Graybill, &
Boes, 1974) y su normalizacién relacionada, y
la eficiencia de Nash-Sutcliffe (Nash & Sutcliffe,
1970) fueron los dos criterios a tener en cuenta,
por ser los mds utilizados para la calibracién
y evaluacién de modelos hidrolégicos con los
datos observados.

Ademads se determiné un intervalo de pre-
diccién al 95% de probabilidad para cada serie
pronosticada segtiin Chatfield (2004). Con el
objetivo de comprobar los supuestos de la teorfa
general del Filtro de Kalman, se realizaron ajus-
tes a funciones de distribucién de probabilidad
para los errores ¢, = x, — X, provenientes de las
series evaluadas.

Resultados y discusion

El modelo ARX que presenté un mejor ajuste
para los afios 2003 y 2004 fue aquel de un orden
autorregresivo de 2 para caudales (na = 2) y de
1 para precipitacién (nb = 1); dichos ajustes se
muestran en los cuadro 3 y 4, respectivamente.
Se puede observar en ambos cuadros que el
modelo mencionado presenta un mejor ajuste,
considerando los coeficientes de Nash-Sutcliffe,
en especial para prondstico en 24 horas que,
como se verd mds adelante, ese prondstico de
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Figura 3. Descripcién del proceso de prondstico de caudales con base en periodos de estimacién de pardmetros para el modelo
ARX + DKF.

L=1 L=2 L=3 L=4 —_—ee Pronéstico

---------- Actualizacién

Linea empo

X k1 P Kk+3 K+ Prondstico inicia en (k + 1 1k)

A} Linea tiempo

K+ k43 - k+5 6 Actualizacién (k + 2) e inicia el prondstico (k+3 | k+2)

Figura 4. Descripcién del prondstico de caudales con L pasos hacia adelante luego del periodo de calibracién.

24 horas es el que exhibe un mejor ajuste en el mejor ajuste, sino que también sea con el mini-
Filtro de Kalman Discreto. Asimismo, siempre mo de términos posibles, pues resulta mas facil
es deseable que el modelo no sé6lo presente el de manejar.
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Cuadro 3. Comparacién de ajustes en términos estadisticos para diferentes 6rdenes del modelo ARX (na, nb) en el pronéstico

de caudales a corto plazo para la serie del afio 2003.

(riﬁ)lf)l MSE? RMSE? Nash-Sutcliffe

na nb 24h 48 h 72h 96 h 24h 48 h 72h 96 h 24 h 48 h 72h | 96 h
1 2 49.88 116.76 | 194.74 | 282.17 7.06 10.81 13.95 16.8 0.94 0.85 0.75 0.64
2 1 41.37 103.63 | 188.29 | 291.01 6.43 10.18 13.72 17.06 0.95 0.87 0.76 0.63
2 2 60.48 125.92 212.3 312.48 7.78 11.22 14.57 17.68 0.92 0.84 0.73 0.60
2 3 62.63 | 131.93 | 216.52 | 312.58 791 11.49 14.71 17.68 092 | 083 | 0.72 | 0.60
3 1 65.34 | 154.05 | 252.88 | 403.66 8.08 12.41 15.90 20.09 092 | 0.80 | 0.68 | 048
3 2 91.08 | 177.80 | 273.81 | 430.19 9.54 13.33 16.55 20.74 | 0.88 | 0.77 | 0.65 | 0.45
3 ) 117.26 | 201.31 | 275.28 | 409.97 10.83 14.19 16.59 20.25 0.85 0.74 0.65 0.48

'na = orden autorregresivo para caudales; nb = orden autorregresivo para precipitacion.

*MSE = Mean Squared Error (cuadrado medio del error).
SRMSE = Root Mean Squared Error (raiz del cuadrado medio del error).

Cuadro 4. Comparacion de ajustes en términos estadisticos para diferentes 6rdenes del modelo ARX (na, nb) en el prondstico

de caudales a corto plazo para la serie del afio 2004.

ARX

(na, nb) MSE

RMSE Nash-Sutcliffe

na nb 24h 48 h 72h 96 h 24h

48 h 72h 96 h 24h | 48h | 72h | 96h

16.96 39.15 61.52 82.04 412

6.26 7.84 9.06 092 | 0.82 | 0.72 | 0.63

16.32 39.13 62.16 83.13 4.04

6.26 7.88 9.12 093 | 0.82 | 0.72 | 0.62

16.83 39.42 62.32 83.33 4.10

6.28 7.89 ONB 092 | 0.82 | 0.72 | 0.62

26.54 57.70 87.39 113.28 5.15

7.60 9.35 10.64 0.88 | 0.74 | 0.60 | 0.48

15.56 36.99 59.76 80.79 3.95

6.08 7.73 8.99 093 | 0.83 | 0.73 | 0.63

16.22 37.73 60.78 82.02 4.03

6.14 7.80 9.06 093 | 0.83 | 0.72 | 0.63

W W [W I[N [N |-
QLN =[N |= N

30.20 63.53 87.29 108.77 5.50

7.97 9.34 10.43 086 | 0.71 | 0.60 | 0.50

A continuacién se muestran los resultados
obtenidos para el prondstico de caudales en la
cuenca del rio Turbio, implementando el mo-
delo ARX+DKF con informacién del afio 2003.
El periodo que utiliz6 el modelo para su cali-
bracién previa y prondsticos posteriores para el
afio 2003 fue de 20 dias. En lo que respecta al
periodo de calibracién elegido fue el que mejor
resultados en términos estadisticos arrojé en el
ARX+DKF y dichos estadisticos se mostraran
después.

La figura 5 muestra el prondstico de
caudales obtenidos para L =1 o con 24 h de
anticipacion. En la figura 5 se puede notar que
hay una diferencia en la escala del tiempo de
cuando se presenta la precipitacién maxima y el
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caudal maximo, en especial el evento mdximo
del mes de septiembre del 2003; quizdas esto se
pueda deber a la presencia de varias presas
en la cuenca del rio Turbio. Sin embargo, en
el evento maximo de julio del 2003, aunque la
precipitaciéon fue mayor que la de septiembre
de 2003, el caudal mdximo es menor que el de
septiembre, quizds esto se deba a las condiciones
de humedad antecedente en los suelos de la
cuenca que tiene un mes de julio a un mes de
septiembre. Algo semejante se observard mds
adelante en la figura 10, que corresponde al
pronostico del afio 2004. En trabajos posteriores
se pudiera plantear un Filtro de Kalman en que
una variable externa adicional a considerar sea
la humedad antecedente, medida como la lluvia
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Figura 5. Pronéstico de caudales para L = 1 0 24 h de anticipacién mediante ARX + DKF en la cuenca del rio Turbio para la serie
del afio 2003.

en cinco dias anteriores, como es el caso de la
técnica del ntimero de curva de escurrimiento
para calcular los escurrimientos (McCuen,
2005).

De igual forma se realizaron los pronésticos
para diferentes pasos hacia adelante L =2 0 48
h,L=3072h,yL=4096h de anticipacién,
respectivamente, con el objetivo de cuantificar
los errores de prediccién, teniendo en cuenta el
esquema descrito en la figura 4.

En el cuadro 5 se resumen las estadisticas
para los diferentes prondsticos en el tiempo
utilizando los datos de la serie del afio 2003.

Los mejores resultados son los prondsticos
de caudales realizados un paso hacia adelante,
es decir, para aquellos con 24 h de anticipacién
que los prondsticos realizados con 48, 72 y 96
horas de anticipacién.

Segtn el resumen estadistico del cuadro 5,
la media para los caudales pronosticados tien-
de a preservarse con respecto a la serie de los
caudales observados; el coeficiente de eficiencia
de Nash-Sutcliffe disminuye conforme el RMSE
aumenta a medida que el pronéstico se hace L
pasos hacia adelante, generando pérdida de

confiabilidad en los pronédsticos realizados. Los
resultados obtenidos por el PBE para todos los
pronoésticos en el tiempo indican que los cauda-
les tienden a ser subestimados por el modelo.
Los obtenidos presentan un comportamiento
caracteristico para caudales bajos, medios y
altos de acuerdo con la dispersiéon que presentan
a lo largo de la linea a 45 grados en la figura 6.
Por esta razén, los datos se agruparon en tres
clases: Q <20 m®/s, 20 m*/s < Q < 60 m®*/s y
Q> 60 m?/s (ver figura 7), siguiendo el patrén
de dispersién de la figura 6.

El orden para los diagramas de dispersion
en la figura 7 son L = 1 gréficas (a, b, ¢); L =2
gréficas (d, e, f); L = 3 gréficas (g, h, i), y para
L =4 gréficas (j, k, 1). Se puede apreciar que para
la serie del afio 2003 (ver cuadro 6), el ARX+DKF
realizé los mejores prondsticos para el rango
de caudales menores a 20 m?/s en términos de
RMSE y Nash-Sutcliffe para L=1y L = 2 ver
gréficas (a,d).

En el mismo rango, los prondsticos para
L =3y L=4no presentan los mejores resultados
de acuerdo con los estadisticos evaluados. Por
el contrario, para el pronéstico de caudales en
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Cuadro 5. Resumen estadistico para diferentes pronésticos mediante ARX + DKF en la cuenca del rio Turbio

para la serie del afio 2003.

Estadisticas Media MSE RMSE R* Nash-Sutcliffe PBE
Caudales pronosticados L = 1 22.6 41.37 6.43 0.97 0.95 -3.82
Caudales pronosticados L =2 22.0 103.63 10.18 0.93 0.87 -6.14
Caudales pronosticados L = 3 21.6 188.29 13.72 0.87 0.76 -7.87
Caudales pronosticados L = 4 21.2 291.01 17.06 0.80 0.63 -9.35

Caudales observados 20.1 - - - - -

PBE = porcentaje de error sistematico.

el rango de 20-60 m®/s (ver gréaficas b, e, h, k de
la figura 7), el ARX+DKF tiende subestimar los
caudales pronosticados, siendo mayor este indi-

provienen de una distribucién normal. En este
sentido, el supuesto fue verificado para los
errores obtenidos en las series pronosticadas a
ce para los caudales pronosticados por arriba de
los 60 m®/s (ver graficas ¢, f, i, 1 de la figura 7).

Como se habia descrito antes, la teoria

24, 48, 72 y 96 horas de anticipacién.
En la figura 8 se presentan los ajustes obte-
nidos para los errores de prondstico, teniendo

asume que los errores de prondstico ¢ =(x-x) en cuenta los diferentes pasos en el tiempo. En
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Figura 7. Diagramas de dispersién agrupados para los pronésticos en diferentes pasos del tiempo utilizando datos
del afio 2003.
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Cuadro 6. Resumen estadistico para los pronésticos agrupados en diferentes pasos del tiempo utilizando datos del afio 2003.

Pronésticos Rango MSE RMSE R? Nash-Sutcliffe PBE
Q<20m?®/s 3.03 1.74 0.96 0.93 1.36

L24_; 20<Q<60m®/s 73.25 8.56 0.84 0.63 -4.45
Q>60m?/s 214.78 14.66 0.82 0.61 -6.25

Q<20m?/s 9.05 3.01 0.9 0.78 2.77

618_13 20<Q<60m’/s 173.46 13.17 0.66 0.13 -6.93
Q>60m®/s 214.78 14.66 0.82 0.61 -6.25

Q<20m?/s 19.81 4.45 0.84 0.52 8.20

L72—§ 20<Q<60m®/s 311.48 17.65 0.47 0.10 -9.87
Q>60m®/s 997.32 31.58 0.22 -0.83 -15.34

Q<20m?/s 42.42 6.51 0.77 -0.03 15.77
L96=}[11 20<Q<60m®/s 456.16 21.36 0.34 -1.19 -12.50
Q>60m?/s 1504.81 38.79 0.08 -1.76 -20.23
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Figura 8. Funciones de distribucién de probabilidad para los errores de prondstico obtenidos con 24 (a), 48 (b), 72 (c) y 96 horas
(d) de anticipacién en la cuenca del rio Turbio para la serie del afio 2003.
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terminos generales, todos los errores se ajustan
a una distribucion ¢ de student escalada.

Segun Chatfield (2001), en la préctica los
errores no siempre se ajustan a una distribu-
cién normal debido a la asimetrfa que se puede
presentar, la presencia de datos atipicos que
generan distribuciones con colas pesadas y por

ISSN 0187-8336

errores asociados a los datos involucrados que
contaminan la distribucién de los errores en la
prediccién. De acuerdo con lo anterior, se sugie-
re que el valor para obtener una probabilidad
dada se seleccione con base en la distribucién
para la cual los datos se han ajustado mediante
sus pardmetros.
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Con el objetivo de establecer el grado de
incertidumbre asociado con realizar los pro-
nosticos para diferentes pasos en el tiempo,
se determinaron los intervalos de prediccién
para cada valor puntual siguiendo los criterios
establecidos por Chatfield (2004).

En la figura 9 se presenta el intervalo de pre-
diccién al 95% de probabilidad para el prondsti-
co realizado con 24 h de anticipacién utilizando
la serie del afio 2003. Se puede observar que el
prondstico es aceptable debido a que la mayoria
de los caudales observados estan dentro del
rango de los intervalos calculados a lo largo de
la serie, a diferencia de los intervalos obtenidos
en el evento ocurrido entre Sep/08/2003 y
Sep/15/2003, donde los caudales observados
quedan por fuera del rango calculado, guardan-
do relacién con los datos que fueron agrupados
en la figura 7 para la clase Q> 60 m®/s con L = 1.

La figura 10 presenta el prondstico de cauda-
les realizado para la serie del afio 2004 utilizan-
do el ARX+DKF para 24 horas de anticipacion.

En esta serie pronosticada, el periodo que
mejor se ajustd fue de 36 dias, considerando en

dos el orden autorregresivo para caudales y en
uno el niimero de dfas de precipitacién, como ya
se habia mostrado anteriormente en el cuadro
4. Las estadisticas para el prondstico de la serie
2004 se resumen en el cuadro 7.

Los mejores resultados obtenidos fueron
para los caudales pronosticados para L =1 o
con 24 horas de anticipacién de acuerdo con las
estadisticas reportadas en el cuadro 7.

La media de la serie pronosticada para L =
1 tiende a alejarse relativamente en cuanto a la
serie de datos observados y a las series pronos-
ticadas con L =2, L =3y L =4, respectivamente.

En términos generales, a medida que se
avanza en el tiempo, el pronéstico tiende a
perder eficiencia reflejado en los valores de
Nash-Sutcliffe, MSE y RMSE, con la tendencia
a subestimar los datos segtin los valores repor-
tados por el PBE.

Se agruparon los caudales pronosticados
para la serie del afio 2004, siguiendo la misma
estructura con la que se realiz6 para los datos
pronosticados en la serie del afio 2003. En este
caso, los rangos fueron para los Q <20 m®/sy
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Figura 10. Prondstico de caudales para L = 1 0 24 horas de anticipacién mediante ARX + DKF en la cuenca del rio Turbio para la
serie del afio 2004.

Cuadro 7. Resumen estadistico para los pronésticos a diferentes pasos mediante ARX + DKF en la cuenca del rio Turbio

para la serie del 2004.
Estadisticas Media MSE RMSE R? Nash-Sutcliffe PBE
Caudales pronosticados L = 1 10.12 16.32 4.04 0.96 0.93 -5.64
Caudales pronosticados L = 2 9.64 39.13 6.26 0.91 0.82 -10.02
Caudales pronosticados L =3 9.18 62.16 7.88 0.86 0.72 -14.14
Caudales pronosticados L = 4 8.76 83.13 9.12 0.80 0.62 -17.84
Caudales observados 8.16 - - - - -

Q=20 m?/s de acuerdo con la dispersion de los
datos obtenidos en la figura 11.

En la figura 12 se presentan los resultados
para L =1 graficas (a, b), para L = 2 gréficas (c,
d), para L = 3 gréficas (e, f) y para L = 4 gréficas
(g, h). Se observa que los mejores ajustes se en-
cuentran para los caudales menores a 20 m®/s,
tal como se observé en la serie del afio 2003 (ver
graficas a, ¢, e, g).

Se puede observar en las gréficas (b, d, f, h)
de la figura 12, que los pronésticos para Q =
20 m®/s en todos los pasos del tiempo tienden
a perder confiabilidad segun el grado de dis-
persion con respecto a los valores observados,
reflejados por el aumento del RMSE y disminu-
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cion del coeficiente de Nash-Sutcliffe a medida
que se hace el pronéstico con mayor tiempo de
anticipacion, tal como se reporta en los estadis-
ticos del cuadro 8.

Al igual que en los resultados obtenidos en
la serie del afio 2003, los errores de prondstico
se ajustaron a una distribucién ¢ student escalada
para los diferentes pasos en el tiempo, generada
por la presencia de datos atipicos, discutidos
anteriormente.

Segun el ajuste de los errores presentado
en la figura 13, se calculé el intervalo de pre-
diccién al 95% de probabilidad con los datos
para L =1 0 24 h de anticipacién. Se obtuvieron
ajustes satisfactorios con respecto a los valores
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Figura 11. Diagramas de dispersién comparativos para prondsticos a 24 (a), 48 (b), 72 (c) y 96 horas (c) en la cuenca del rio

Turbio para la serie del afio 2004.

observados (ver figura 14) en la mayoria de
los intervalos calculados, a diferencia de los
pronésticos realizados entre oct/01/2004 y
oct/04/2004 para los cuales los intervalos no
incluyeron los valores observados en el mismo
periodo de tiempo, estableciendo una relacién
de semejanza con los datos agrupados en el
rango de Q =20 m*/sy con 24 h de anticipacién
reportados en la figura 12.

Kim, Tachikawa y Takara (2004) hicieron la
implementacién del Filtro de Kalman con el mo-
delo CDRMV3 para el pronéstico de caudales y
encontré que los mejores resultados pertenecian
a los prondsticos realizados a una hora que para
los obtenidos a 12 horas después, evaluados en
términos de RMSE.

Por otra parte, Hirpa et al. (2013) encon-
traron que en términos de Nash-Sutcliffe, los

mejores resultados fueron para los prondsticos

de caudales realizados para un dia que para

aquellos que fueron realizados con 15 dias de
anticipacion, en el rio Ganges y Brahmaputra
de Asia meridional.

En este trabajo se llev6 a cabo el prondéstico
de caudales para los afios 2003 y 2004 porque
eran los datos mas completos y de mds calidad,

en la base de datos BANDAS, para alimentar el
modelo de Filtro de Kalman. En trabajos poste-
riores se pudiera probar el Filtro de Kalman en

cuencas con datos de caudales mds completos;
quizds intentar el acceso a la base de datos de
caudales de la Comisién Federal de Electricidad
(CFE). Sin embargo, el acceso a la base de datos
de caudales de CFE no es libre, tal como ocurre
con la base de datos BANDAS de la Comisién
Nacional del Agua.
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Figura 12. Diagramas de dispersién agrupados para los prondsticos en diferentes pasos del tiempo utilizando datos

del afio 2004.
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Cuadro 8. Resumen estadistico para los pronésticos agrupados en diferentes pasos del tiempo utilizando datos del afio 2004.

Prondsticos Rango MSE RMSE R? Nash-Sutcliffe PBE
L=1 Q<20 m¥/s 4,01 2.00 0.91 0.82 -1.38
24h Q=20 m®/s 114.77 10.71 0.86 0.67 -10.24
L=2 Q<20 m®/s 8.21 2.87 0.83 0.64 -2.75
48h Q=20 m¥/s 286.45 16.92 0.65 0.19 -17.86
L=3 Q<20 m*/s 11.36 3.37 0.77 0.50 -4.61
72h Q=20 m®/s 468.61 21.65 0.42 -0.33 -24.40
L—4 Q<20 m®/s 13.38 3.66 0.73 0.42 -6.41
96 h Q=20 m¥/s 468.61 21.65 0.42 -0.33 -24.40
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Figura 13. Funciones de distribucién de probabilidad para los errores de pronéstico obtenidos con 24, 48, 72 y 96 horas de

anticipacién en la cuenca del rio Turbio para la serie del afio 2004.

Conclusiones

El pronéstico de caudales mediante el modelo
ARX+DKF en la cuenca del rio Turbio para los
aflos 2003 y 2004 fue implementado de manera

satisfactoria. Con base en los resultados obte-
nidos, los pronésticos realizados un paso hacia
adelante L = 1 o con 24 horas de anticipacién,
presentan un mejor ajuste en términos de Nash-
Sutcliffe, MSE y RMSE, que los pronésticos rea-
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Figura 14. Intervalo de prediccién al 95% de probabilidad para L =1 0 24 h de anticipacién en la cuenca del rio Turbio para la
serie del afio 2004.

lizados a 2, 3 y 4 pasos hacia adelante, es decir,
con 48, 72 y 96 horas de anticipacion.

Los periodos previos de calibracién para la
metodologia del modelo ARX+DKF son funda-
mentales para mejorar los prondsticos a través
del tiempo, pues la funcién de respuesta en la
cuenca puede ser variante segin los periodos
del ciclo hidrolégico o debido a la presencia de
eventos meteorolégicos de consideracién.

Los errores de prondstico para las dos series
evaluadas no se ajustaron a una distribucién
normal como teéricamente deberia presentarse,
pero la presencia de datos atfpicos atribuidos a
la calidad de la informacién involucrada genera
distribuciones de colas pesadas pertenecientes a
la familia de la distribucién t de student.

La implementacién de técnicas, como el Fil-
tro de Kalman, para el pronéstico de caudales
en cuencas con instrumentacién muy pobre
o deficiente puede ser una tarea compleja si
la medicién de caudales no es continua o es
inexistente, o los registros son de mala calidad y
corta duracién. De hecho, por eso en este trabajo
la implementacién del Filtro de Kalman en la

«ISSN 0187-8336

cuenca del rio Turbio sélo se hizo para los afios
2003 y 2004.

En trabajos posteriores se pudiera hacer lo si-
guiente: (a) considerar la humedad antecedente
como variable exégena en el Filtro de Kalman;
(b) aplicar el Filtro de Kalman en cuencas instru-
mentadas por la CFE, en donde la continuidad y
la calidad de registros pudiera ser més completa
que los registros de BANDAS.
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