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Abstract

González-Leiva, F., Ibáñez-Castillo, L. A., Valdés, J. B., 
Vázquez-Peña, M. A., & Ruiz-García, A. (julio-agosto, 2015). 
Pronóstico de caudales con Filtro de Kalman Discreto en el 
río Turbio. Tecnología y Ciencias del Agua, 6(4), 5-24.

Se propuso la implementación del algoritmo del Filtro de 
Kalman Discreto (DKF) junto con un modelo autorregresivo 
con entrada exógena (ARX) para realizar el pronóstico 
de caudales a corto plazo con 24, 48, 72 y 96 horas de 
anticipación en la cuenca del río Turbio, localizada en el 
estado de Guanajuato y parte del estado de Jalisco, México, 
vulnerable a inundaciones durante los periodos de lluvias 
que se presentan normalmente en la zona. La información de 
precipitación y caudal disponible con las que se realizaron 
los pronósticos corresponde a las series de los años 2003 y 
2004. Los resultados obtenidos indican que los pronósticos 
realizados un paso hacia adelante, es decir, con un tiempo de 
24 horas de anticipación, presentaron los mejores ajustes en 
términos de Nash-Sutcliffe, MSE y RMSE, que los pronósticos 
realizados a 48, 72 y 96 horas de anticipación.

Palabras clave: Filtro de Kalman, modelos autorregresivos, 
pronósticos de caudales a corto plazo.
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This paper proposes the use of the discreet Kalman filter (DKF) along 
with an autoregressive model with exogenous inputs (ARX) for 
short-term streamflow forecasting with lead times of 24, 48, 72 and 
96 hours. This model was applied to the Turbio River basin, located 
in  the state of Guanajuato and a portion of the state of Jalisco, 
Mexico. This area is vulnerable to flooding during rainy periods 
which normally occur in the region. The forecasting was based on 
available precipitation and streamflow data from the years 2003 and 
2004. The results indicate that the forecasts performed with one-step 
ahead, that is with a 24-hour lead time, present better fits than 48, 72 
and 96-hour lead times in terms of Nash-Sutcliffe, MSE and RMSE.
 
Keywords: Kalman filter, autoregressive models, short-term 
streamflow forecasting
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Introducción

Como consecuencia de la variabilidad del clima 
(IPCC, 2007; Mendoza et al., 2009; Montero-
Martínez, Ojeda-Bustamante, Santana-Sepúlveda, 
Prieto-González, & Lobato-Sánchez, 2013) y 
de su previsible influencia en la magnitud de 
la gravedad, la frecuencia y el impacto de las 
avenidas y sequías, durante los últimos años ha 
aumentado la importancia de las predicciones 

como estimaciones de los estados futuros de un 
fenómeno hidrológico. Dichas predicciones son 
esenciales para el funcionamiento eficaz de la 
infraestructura hídrica y para la atenuación de 
desastres naturales provocados según las condi-
ciones ambientales (WMO, 2009).

De acuerdo con Valdés, Mejía-Velázquez, 
& Rodríguez-Iturbe (1980), en la predicción de 
caudales se puede postular una relación causal 
entre la precipitación en varios puntos de la 
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cuenca, a diferentes instantes de tiempo y un 
caudal medio en un punto de salida para un día 
determinado. Esta relación causal, denominada 
función de respuesta, puede ser representada 
como un modelo de caja negra. Los modelos 
autorregresivos han sido ampliamente usados 
en la hidrología y los recursos hídricos desde 
inicios de la década de 1960 para la modelación 
anual y periódica en series de tiempo de tipo 
hidrológico.

La aplicación de estos modelos ha sido 
atractiva en la hidrología; en especial, la forma 
autorregresiva tiene dependencia del tiempo y 
por la facilidad para ser usados (Salas, Delleur, 
Yevjevich, & Lane, 1980; Box, Jenkins, & Reinsel, 
2013). En los últimos años, el algoritmo del Filtro 
de Kalman se ha propuesto para realizar el pro-
nóstico de caudales en los sistemas hidrológicos, 
operado junto con modelos matemáticos de 
lluvia- escurrimiento en cuencas hidrográficas 
(Moradkhani, Sorooshian, Gupta, & Houser, 
2005; Xie & Zhang, 2010; Lü et al., 2013; Morales-
Velázquez, Aparicio, & Valdés, 2014; Abaza, 
Anctil, Fortin, & Turcotte, 2014), haciendo én-
fasis en la estimación óptima de los parámetros 
de estado de los modelos utilizados mediante 
la técnica conocida como asimilación de datos 
(Moradkhani, DeChant, & Sorooshian, 2012; Liu 
et al., 2012; Shi, Davis, Zhang, Duffy, & Yu, 2014; 
Samuel, Coulibaly, Dumedah, & Moradkhani, 
2014, Liu, et al., 2015; Yucel, Onen, Yilmaz, & 
Gochis, 2015; Li, Ryu, Western, & Wang, 2015). 
Sin embargo, para usar estos modelos se requie-
ren series continuas y completas de caudales, 
algo que podrían no tener países en desarrollo, 
como México. Según Perevochtchikova (2013), 
en las bases de datos a nivel climatológico, 
CLICOM, y de aguas superficiales, BANDAS, 
que posee México, existe una problemática recu-
rrente: poca accesibilidad, marcadas diferencias 
sectoriales y vacíos en las series de tiempo, lo 
que deriva en dificultades para su uso en las 
tareas de comparación y análisis de evolución 
espacial y temporal, sistematización de datos, 
y construcción de indicadores y de modelos a 
escala local.

El Filtro de Kalman Discreto (DKF) fue pro-
puesto por Kalman (1960) como una solución 

recursiva por el método de mínimos cuadrados 
al problema de filtrado lineal de datos discretos. 
Es un procedimiento matemático que opera por 
medio de un mecanismo de predicción y correc-
ción. Este algoritmo pronostica el nuevo estado 
a partir de una estimación previa, añadiendo 
un término de corrección proporcional al error 
de predicción, de tal forma que este último es 
minimizado estadísticamente. Por esta razón, si 
se tiene conocimiento del sistema dinámico, las 
estadísticas del sistema ruidoso, los errores de 
medición y las condiciones iniciales, se puede 
estimar el estado para un sistema dinámico 
(Gelb, 1974; Simon, 2001; Welch & Bishop, 2006).

El pronóstico de caudales en cuencas hi-
drográficas forma parte de los procedimientos 
que permiten tomar decisiones con criterios 
fundamentados en la planificación del riesgo 
que busca mitigar los impactos negativos oca-
sionados por las avenidas en campos específicos 
de la hidrología, como la regulación de embalses 
y la emisión de alertas tempranas ante inun-
daciones en zonas con presencia de población 
civil. En México, Morales-Velázquez, Aparicio 
y Valdés (2014) evaluaron la utilidad del algo-
ritmo del Filtro de Kalman Discreto (DKF) en 
el pronóstico de avenidas, con fines de regular 
los caudales en la presa Ángel Corbino Corzo o 
Peñitas, perteneciente al sistema hidroeléctrico 
Grijalva.

En el presente trabajo se propuso la imple-
mentación del algoritmo del Filtro de Kalman 
Discreto (DKF) junto con un modelo autorregre-
sivo con entrada exógena ARX para realizar el 
pronóstico de caudales a corto plazo, con 24, 48, 
72 y 96 horas de anticipación en la cuenca del río 
Turbio, localizada en el estado de Guanajuato y 
parte del estado de Jalisco, México, vulnerable 
a inundaciones durante los periodos de lluvias 
registradas en la zona.

Materiales y métodos

Descripción de la cuenca

La figura 1 muestra la localización y repre-
sentación de la cuenca del río Turbio, la cual 
pertenece a la Región Hidrológica 12 Lerma-
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Santiago, ubicada en los estados de Guanajuato 
y Jalisco, entre los 20° 32’ 42” y los 21° 21’ 18” 
de latitud norte, y entre los 101° 27’ 82” y los 
102° 17’ 57” de longitud oeste. Las principales 
poblaciones que se encuentran en la cuenca 
son Ciudad de León, San Francisco del Rincón, 
Purísima de Bustos y Manuel Doblado. El área 
total de la cuenca es de 3 322 km2 hasta la es-
tación hidrométrica Las Adjuntas, ubicada en 
los 20° 40’ 32” de latitud norte y 101° 50’ 40” 
de longitud oeste, de los cuales 58.8% pertenece 
al estado de Guanajuato y 41.2% corresponde 
al estado de Jalisco. El parteaguas de la cuenca 
tiene su máxima elevación a los 2 670 msnm y 
el punto de salida referenciado por la estación 
hidrométrica se encuentra a los 1 723 msnm. 
La pendiente media de la cuenca es de 11%; el 
cauce principal tiene un desnivel de 323 m y la 
cuenca presenta un tiempo de concentración de 
21 h, respectivamente. La precipitación media 

anual es de 659 mm, según las normales clima-
tológicas para el periodo 1981-2010 (SMN, 2014), 
con un régimen de lluvias que inicia en el mes 
de junio y termina en octubre, concentrándose 
en este periodo un 89% del total de las precipi-
taciones anuales, caracterizadas por ser intensas 
y de corta duración. 

Las presas más importantes dentro de la zo-
na descrita son El Palote y El Barrial. La primera 
se encuentra en Ciudad de León y su propósito 
es agua potable y control de avenidas, con una 
capacidad máxima de 17 Mm3; la segunda se 
ubica sobre San Francisco del Rincón, diseñada 
para el control de avenidas y riego, con una 
capacidad de 55.26 Mm3. Otras presas que se 
destacan son Santa Efigenia, con capacidad de 
42.75 Mm3; Jalpa Vieja, con 14.38 Mm3; Ciénaga 
de Galvanes, con 11 Mm3, y Potrerillos, con 
15 Mm3; todas con doble propósito de riego y 
control de avenidas (Conagua, 2014b).

Figura 1. Localización de la cuenca del río Turbio.
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Información climatológica

La información de precipitación para alimentar 
el modelo de pronóstico se obtuvo de la base de 
datos del CLICOM (SMN, 2014), utilizando las 
series de los años 2003 y 2004 a nivel diario, por 
tener el mayor registro de información completa 
para la cuenca. En el cuadro 1 se muestran un 
total de 11 estaciones meteorológicas distribui-
das sobre toda la superficie de la cuenca del río 
Turbio.

Información hidrométrica

Los caudales medios diarios se obtuvieron de 
la base de datos del Banco Nacional de Aguas 
Superficiales, BANDAS (Conagua, 2014a), para 
la serie de los años 2003 y 2004. En el cuadro 2 se 
resumen los cuantiles para los gastos máximos 
registrados en la estación hidrométrica Las 
Adjuntas, según la Comisión Nacional de Agua 
y reportados por Protección Civil Guanajuato 
(2012).

Metodología

Los modelos autorregresivos han sido amplia-
mente usados en la hidrología y los recursos 
hídricos desde inicios la década de 1960, para 

la modelación anual y periódica en series de 
tiempo de tipo hidrológico. La aplicación de 
estos modelos ha sido atractiva en la hidrología, 
principalmente porque la forma autorregresiva 
tiene dependencia del tiempo y por la facilidad 
para su implementación (Salas et al., 1980; Box 
et al., 2013). 

Se propuso la creación de un modelo au-
torregresivo con entrada exógena ARX para 
predecir los caudales medios con base en los 
registros de series pasadas, obtenidos a partir 
de la base de datos BANDAS (Conagua, 2014a) 
para la estación hidrométrica Las Adjuntas. 
El modelo ARX relaciona las entradas con las 
salidas del sistema mediante una ecuación lineal 

Cuadro 1. Estaciones meteorológicas en la cuenca del río Turbio.

Código estación Nombre Municipio Estado Dependencia

11020 El Palote León Guanajuato SMN

11025 Hacienda de Arriba León Guanajuato SMN/CEAG

11035 La Sandía León Guanajuato SMN

11036 Adjuntas Manuel Doblado Guanajuato SMN/CEAG

11045 Media Luna León Guanajuato SMN

11153 La Laborcita León Guanajuato SMN

11157 San Francisco del 
Rincón Peñuelas Guanajuato SMN

11159 San Francisco del 
Rincón Presa el Barrial Guanajuato SMN

14123 San Diego Alejandría San Diego Alejandría Jalisco SMN

14157 Unión de San Antonio Unión de San Antonio Jalisco SMN

14369 La Vaquera Arandas Jalisco SMN

Fuente: SMN (2014).

Cuadro 2. Periodos de retorno para gastos máximos en la 
estación hidrométrica Las Adjuntas.

Periodo de retorno (años) Caudal (m3/s)

2 44.35

5 84.60

10 111.24

20 136.8

50 169.88

100 194.67

500 251.96

1 000 276.59

Fuente: Protección Civil Guanajuato (2012). 
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en diferencias con coeficientes constantes (Hsu, 
Moradkhani, & Sorooshian, 2009):

	 yt+1 = iyt i
i=0

na

+ jrt j
j=0

nb

+ et+1	 (1)

Donde yt y rt son el caudal observado y la 
lluvia en el tiempo t, el cual representa un día; 
et+1 es el término de error en la estimación del 
caudal; αi y βj son parámetros, respectivamente. 
Los índices na y nb especifican el número de 
observaciones previas de caudales y lluvias. Es 
lo que sería un modelo autorregresivo ARX (na, 
nb).

Conocida la estructura general del modelo 
ARX, la formulación en espacio de estados se 
convierte en una herramienta útil para utilizar el 
Filtro de Kalman en cualquiera de sus versiones. 
La ecuación (1) puede representarse en forma de 
espacio de estados como sigue:

	 xk+1 = Axk +Buk +wk	 (2)

	 zk =Hxk + vk
 			 

donde xk+1 es el caudal presente (no observado) 
de tamaño (n x 1); A es la matriz de parámetros 
αi, de tamaño (n x n); xk, el caudal en el tiempo 
k de tamaño (n x 1); B, la matriz de parámetros 
exógenos βj de tamaño (n x m); uk representa el 
vector que contiene la precipitación media regis-
trada en la cuenca para el tiempo k de tamaño 
(m x 1); zk, el caudal medido en el tiempo k de 
tamaño (m x 1); H, la matriz de transformación 
que mapea el vector de estados al dominio de 
la medición con dimensiones (m x n); wk y vk son 
vectores que representan el ruido gaussiano en 
el proceso y el ruido en la medición para cada 
observación con tamaños (m x 1), de tal manera 
que:

	 wk ~N(0,Q)	 (3)

	 vk ~N(0,R)

Para el caso específico de la matriz R de 
covarianza de la perturbación de la medición, 

ésta se definió de acuerdo con lo reportado 
por Moralez-Velázquez et al., 2014. La matriz 
fue representada como α*q(k-1), donde α es una 
constante de proporcionalidad que representa 
un error constante e igual a una fracción del 
caudal en el tiempo anterior (k - 1). El valor de 
α en todos los casos tuvo un 5% con respecto al 
caudal inmediatamente anterior; ese 5% es el 
error que se cree comete la persona que mide los 
caudales, es decir, el aforador. De acuerdo con la 
formulación de la ecuación (2), la dinámica de 
un sistema permite una representación más sen-
cilla, proporcionando descripciones estadísticas 
del comportamiento del sistema (Gelb, 1974). 

Los modelos en espacio de estados son 
esencialmente una notación conveniente para 
abordar el manejo de un amplio rango de mo-
delos de series de tiempo. En la estimación y 
control de problemas, esta metodología se basa 
en modelos estocásticos, dado el supuesto de la 
naturaleza errónea de las mediciones (Ramírez, 
2003). 

Finalmente, se puede observar que el sistema 
representado en la ecuación (2) consiste de un 
componente determinístico y un componente 
estocástico que reflejan incertidumbre en el 
modelo (Lee & Singh, 1998).

De la ecuación (3), Q y R pueden cambiar 
en el tiempo, pero por lo general se suponen 
constantes por simplicidad (Simon, 2001) y sus 
valores esperados se pueden representar como 
se sigue:

					   
	

Q=E wkwk
T

R=E vk vk
T 	 (4)

De esta forma, el modelo ARX se representa 
en espacio de estados, facilitando la aplicación 
del Filtro de Kalman para obtener los pronós-
ticos de caudal en el tiempo (k + 1) a partir de 
la serie de caudales registrada en el tiempo (k), 
incluyendo la precipitación media diaria en la 
cuenca como el componente de entrada exógeno 
al modelo y siguiendo el esquema del algoritmo 
representado en la figura 2 mediante estimado-
res de estados (Kim, 2011).
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Para crear el modelo ARX se programó 
una rutina en Matlab®, utilizando el toolbox de 
identificación de sistemas para obtener el orden 
del proceso autorregresivo según el número de 
términos representados en la ecuación (1). 

Teniendo en cuenta que los parámetros 
estimados por el modelo ARX pueden variar 
en función de las épocas de mayor precipi-
tación y/o de las variaciones abruptas en los 
caudales, se estableció un periodo (P) a modo 
de calibración (“warming up”) para estimar los 
parámetros e iniciar el pronóstico de caudales 
en el tiempo (t0 + P). 

Una vez definida la longitud del periodo, los 
pronósticos se realizaron desde (t0 + P) hasta el 
tiempo (t0 + 2P), recalculando los parámetros del 
modelo ARX para el periodo (2P), iniciando de 
nuevo el pronóstico ahora desde (t0 + 2P) hasta 
(t0 + 3P) y así de modo sucesivo, tal como se 
describe en la figura 3. De esta manera, la im-
plementación del ARX+DKF se hizo dinámica y 
con matrices de estado, que fueron variando en 
cada periodo definido, disminuyendo el ruido 
generado en el proceso representado como wk 
en la ecuación (2):

	 xk+1 = Axk +Buk +wk
	 (2)

Con el propósito de encontrar diferencias en-
tre los pronósticos para L pasos hacia adelante, 
es decir, con 24, 48, 72 y 96 horas de anticipación, 
fue ejecutada una rutina en Matlab® que utilizó 
información del estado en el tiempo (k) para 
avanzar, sin actualizar L pasos en la línea de 
tiempo. Una vez llegada a la posición L deseada, 
se realizó la actualización del primer estado 
pronosticado, como se describe en la figura 4. El 
ciclo se realizó teniendo en cuenta los periodos 
de calibración de modelo ARX descritos en la 
figura 3.

Para evaluar el ajuste de los pronósticos 
realizados con respecto a los datos medidos 
se calcularon las principales estadísticas según 
Gupta, Kling, Yilmanz y Martínez (2009) para 
la metodología descrita anteriormente. El error 
cuadrático medio MSE (Mood, Graybill, & 
Boes, 1974) y su normalización relacionada, y 
la eficiencia de Nash-Sutcliffe (Nash & Sutcliffe, 
1970) fueron los dos criterios a tener en cuenta, 
por ser los más utilizados para la calibración 
y evaluación de modelos hidrológicos con los 
datos observados.

Además se determinó un intervalo de pre-
dicción al 95% de probabilidad para cada serie 
pronosticada según Chatfield (2004). Con el 
objetivo de comprobar los supuestos de la teoría 
general del Filtro de Kalman, se realizaron ajus-
tes a funciones de distribución de probabilidad 
para los errores ek = xk x̂k provenientes de las 
series evaluadas.

Resultados y discusión

El modelo ARX que presentó un mejor ajuste 
para los años 2003 y 2004 fue aquel de un orden 
autorregresivo de 2 para caudales (na = 2) y de 
1 para precipitación (nb = 1); dichos ajustes se 
muestran en los cuadro 3 y 4, respectivamente. 
Se puede observar en ambos cuadros que el 
modelo mencionado presenta un mejor ajuste, 
considerando los coeficientes de Nash-Sutcliffe, 
en especial para pronóstico en 24 horas que, 
como se verá más adelante, ese pronóstico de 

x̂0 ,P0

1. Valores iniciales

2. Etapa de predicción

Mediciones Zt Estimaciones x̂t

3. Ganancia de Kalman

x̂t t 1 = Ax̂t 1t 1 +Btut

P̂t t 1 = AP̂t 1t 1A
T +Qt

Ẑt t 1 =HtP̂t 1t 1H
T +Rt

Kt = P̂t t 1Ht Ẑt t
1

4. Etapa de actualización
rt = Zt Htx̂t t 1

x̂t t = x̂t t 1 +Ktrt

P̂t t = P̂t t 1 KtHtP̂t t 1

Figura 2. Algoritmo para el Filtro de Kalman Discreto. 
Fuente: Kim (2011).
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Figura 3. Descripción del proceso de pronóstico de caudales con base en periodos de estimación de parámetros para el modelo 
ARX + DKF.

Figura 4. Descripción del pronóstico de caudales con L pasos hacia adelante luego del periodo de calibración.

24 horas es el que exhibe un mejor ajuste en el 
Filtro de Kalman Discreto. Asimismo, siempre 
es deseable que el modelo no sólo presente el 

mejor ajuste, sino que también sea con el míni-
mo de términos posibles, pues resulta más fácil 
de manejar.
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A continuación se muestran los resultados 
obtenidos para el pronóstico de caudales en la 
cuenca del río Turbio, implementando el mo-
delo ARX+DKF con información del año 2003. 
El periodo que utilizó el modelo para su cali-
bración previa y pronósticos posteriores para el 
año 2003 fue de 20 días. En lo que respecta al 
periodo de calibración elegido fue el que mejor 
resultados en términos estadísticos arrojó en el 
ARX+DKF y dichos estadísticos se mostrarán 
después. 

La figura 5 muestra el pronóstico de 
caudales obtenidos para L = 1 o con 24 h de 
anticipación. En la figura 5 se puede notar que 
hay una diferencia en la escala del tiempo de 
cuando se presenta la precipitación máxima y el 

caudal máximo, en especial el evento máximo 
del mes de septiembre del 2003; quizás esto se 
pueda deber a la presencia de varias presas 
en la cuenca del río Turbio. Sin embargo, en 
el evento máximo de julio del 2003, aunque la 
precipitación fue mayor que la de septiembre 
de 2003, el caudal máximo es menor que el de 
septiembre, quizás esto se deba a las condiciones 
de humedad antecedente en los suelos de la 
cuenca que tiene un mes de julio a un mes de 
septiembre. Algo semejante se observará más 
adelante en la figura 10, que corresponde al 
pronóstico del año 2004. En trabajos posteriores 
se pudiera plantear un Filtro de Kalman en que 
una variable externa adicional a considerar sea 
la humedad antecedente, medida como la lluvia 

Cuadro 3. Comparación de ajustes en términos estadísticos para diferentes órdenes del modelo ARX (na, nb) en el pronóstico 
de caudales a corto plazo para la serie del año 2003.

ARX 
(na,nb)1 MSE2 RMSE3 Nash-Sutcliffe

na nb 24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h

1 2 49.88 116.76 194.74 282.17 7.06 10.81 13.95 16.8 0.94 0.85 0.75 0.64

2 1 41.37 103.63 188.29 291.01 6.43 10.18 13.72 17.06 0.95 0.87 0.76 0.63

2 2 60.48 125.92 212.3 312.48 7.78 11.22 14.57 17.68 0.92 0.84 0.73 0.60

2 3 62.63 131.93 216.52 312.58 7.91 11.49 14.71 17.68 0.92 0.83 0.72 0.60

3 1 65.34 154.05 252.88 403.66 8.08 12.41 15.90 20.09 0.92 0.80 0.68 0.48

3 2 91.08 177.80 273.81 430.19 9.54 13.33 16.55 20.74 0.88 0.77 0.65 0.45

3 3 117.26 201.31 275.28 409.97 10.83 14.19 16.59 20.25 0.85 0.74 0.65 0.48

1na = orden autorregresivo para caudales; nb = orden autorregresivo para precipitación.
2MSE = Mean Squared Error (cuadrado medio del error).
3RMSE = Root Mean Squared Error (raíz del cuadrado medio del error).

Cuadro 4. Comparación de ajustes en términos estadísticos para diferentes órdenes del modelo ARX (na, nb) en el pronóstico 
de caudales a corto plazo para la serie del año 2004.

ARX 
(na, nb)

MSE RMSE Nash-Sutcliffe

na nb 24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h 24 h 48 h 72 h 96 h

1 2 16.96 39.15 61.52 82.04 4.12 6.26 7.84 9.06 0.92 0.82 0.72 0.63

2 1 16.32 39.13 62.16 83.13 4.04 6.26 7.88 9.12 0.93 0.82 0.72 0.62

2 2 16.83 39.42 62.32 83.33 4.10 6.28 7.89 9.13 0.92 0.82 0.72 0.62

2 3 26.54 57.70 87.39 113.28 5.15 7.60 9.35 10.64 0.88 0.74 0.60 0.48

3 1 15.56 36.99 59.76 80.79 3.95 6.08 7.73 8.99 0.93 0.83 0.73 0.63

3 2 16.22 37.73 60.78 82.02 4.03 6.14 7.80 9.06 0.93 0.83 0.72 0.63

3 3 30.20 63.53 87.29 108.77 5.50 7.97 9.34 10.43 0.86 0.71 0.60 0.50
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en cinco días anteriores, como es el caso de la 
técnica del número de curva de escurrimiento 
para calcular los escurrimientos (McCuen, 
2005).

De igual forma se realizaron los pronósticos 
para diferentes pasos hacia adelante L = 2 o 48 
h, L = 3 o 72 h, y L = 4 o 96 h de anticipación, 
respectivamente, con el objetivo de cuantificar 
los errores de predicción, teniendo en cuenta el 
esquema descrito en la figura 4. 

En el cuadro 5 se resumen las estadísticas 
para los diferentes pronósticos en el tiempo 
utilizando los datos de la serie del año 2003. 

Los mejores resultados son los pronósticos 
de caudales realizados un paso hacia adelante, 
es decir, para aquellos con 24 h de anticipación 
que los pronósticos realizados con 48, 72 y 96 
horas de anticipación. 

Según el resumen estadístico del cuadro 5, 
la media para los caudales pronosticados tien-
de a preservarse con respecto a la serie de los 
caudales observados; el coeficiente de eficiencia 
de Nash-Sutcliffe disminuye conforme el RMSE 
aumenta a medida que el pronóstico se hace L 
pasos hacia adelante, generando pérdida de 

confiabilidad en los pronósticos realizados. Los 
resultados obtenidos por el PBE para todos los 
pronósticos en el tiempo indican que los cauda-
les tienden a ser subestimados por el modelo. 
Los obtenidos presentan un comportamiento 
característico para caudales bajos, medios y 
altos de acuerdo con la dispersión que presentan 
a lo largo de la línea a 45 grados en la figura 6. 
Por esta razón, los datos se agruparon en tres 
clases: Q < 20 m3/s, 20 m3/s ≤ Q ≤ 60 m3/s y 
Q > 60 m3/s (ver figura 7), siguiendo el patrón 
de dispersión de la figura 6.

El orden para los diagramas de dispersion 
en la figura 7 son L = 1 gráficas (a, b, c); L = 2 
gráficas (d, e, f); L = 3 gráficas (g, h, i), y para 
L = 4 gráficas (j, k, l). Se puede apreciar que para 
la serie del año 2003 (ver cuadro 6), el ARX+DKF 
realizó los mejores pronósticos para el rango 
de caudales menores a 20 m3/s en términos de 
RMSE y Nash-Sutcliffe para L = 1 y L = 2 ver 
gráficas (a,d). 

En el mismo rango, los pronósticos para 
L = 3 y L = 4 no presentan los mejores resultados 
de acuerdo con los estadisticos evaluados. Por 
el contrario, para el pronóstico de caudales en 

Figura 5. Pronóstico de caudales para L = 1 o 24 h de anticipación mediante ARX + DKF en la cuenca del río Turbio para la serie 
del año 2003.
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Cuadro 5. Resumen estadístico para diferentes pronósticos mediante ARX + DKF en la cuenca del río Turbio 
para la serie del año 2003.

Estadísticas Media MSE RMSE R2 Nash-Sutcliffe PBE 

Caudales pronosticados L = 1 22.6 41.37 6.43 0.97 0.95 -3.82

Caudales pronosticados L = 2 22.0 103.63 10.18 0.93 0.87 -6.14

Caudales pronosticados L = 3 21.6 188.29 13.72 0.87 0.76 -7.87

Caudales pronosticados L = 4 21.2 291.01 17.06 0.80 0.63 -9.35

Caudales observados 20.1 - - - - -

PBE = porcentaje de error sistemático.

Figura 6. Diagramas de dispersión comparativos para pronósticos a 24 (a), 48 (b), 72 (c) y 96 horas (c) en la cuenca del río Turbio 
para la serie del año 2003.

el rango de 20-60 m3/s (ver gráficas b, e, h, k de 
la figura 7), el ARX+DKF tiende subestimar los 
caudales pronosticados, siendo mayor este índi-
ce para los caudales pronosticados por arriba de 
los 60 m3/s (ver gráficas c, f, i, l de la figura 7).

Como se había descrito antes, la teoría 
asume que los errores de pronóstico e = (x x̂)  

provienen de una distribución normal. En este 
sentido, el supuesto fue verificado para los 
errores obtenidos en las series pronosticadas a 
24, 48, 72 y 96 horas de anticipación.

En la figura 8 se presentan los ajustes obte-
nidos para los errores de pronóstico, teniendo 
en cuenta los diferentes pasos en el tiempo. En 
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Figura 7. Diagramas de dispersión agrupados para los pronósticos en diferentes pasos del tiempo utilizando datos 
del año 2003.
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Cuadro 6. Resumen estadístico para los pronósticos agrupados en diferentes pasos del tiempo utilizando datos del año 2003.

Pronósticos Rango MSE RMSE R2 Nash-Sutcliffe PBE

L = 1
24 h

Q < 20 m3/s 3.03 1.74 0.96 0.93 1.36

20 ≤ Q ≤ 60 m3/s 73.25 8.56 0.84 0.63 -4.45

Q > 60 m3/s 214.78 14.66 0.82 0.61 -6.25

L = 2
48 h

Q < 20 m3/s 9.05 3.01 0.9 0.78 2.77

20 ≤ Q ≤ 60 m3/s 173.46 13.17 0.66 0.13 -6.93

Q > 60 m3/s 214.78 14.66 0.82 0.61 -6.25

L = 3
72 h

Q < 20 m3/s 19.81 4.45 0.84 0.52 8.20

20 ≤ Q ≤ 60 m3/s 311.48 17.65 0.47 0.10 -9.87

Q > 60 m3/s 997.32 31.58 0.22 -0.83 -15.34

L = 4
96 h

Q < 20 m3/s 42.42 6.51 0.77 -0.03 15.77

20 ≤ Q ≤ 60 m3/s 456.16 21.36 0.34 -1.19 -12.50

Q > 60 m3/s 1 504.81 38.79 0.08 -1.76 -20.23

Figura 8. Funciones de distribución de probabilidad para los errores de pronóstico obtenidos con 24 (a), 48 (b), 72 (c) y 96 horas 
(d) de anticipación en la cuenca del río Turbio para la serie del año 2003.

terminos generales, todos los errores se ajustan 
a una distribucion t de student escalada.

Según Chatfield (2001), en la práctica los 
errores no siempre se ajustan a una distribu-
ción normal debido a la asimetría que se puede 
presentar, la presencia de datos atípicos que 
generan distribuciones con colas pesadas y por 

errores asociados a los datos involucrados que 
contaminan la distribución de los errores en la 
predicción. De acuerdo con lo anterior, se sugie-
re que el valor para obtener una probabilidad 
dada se seleccione con base en la distribución 
para la cual los datos se han ajustado mediante 
sus parámetros.
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Con el objetivo de establecer el grado de 
incertidumbre asociado con realizar los pro-
nósticos para diferentes pasos en el tiempo, 
se determinaron los intervalos de predicción 
para cada valor puntual siguiendo los criterios 
establecidos por Chatfield (2004). 

En la figura 9 se presenta el intervalo de pre-
dicción al 95% de probabilidad para el pronósti-
co realizado con 24 h de anticipación utilizando 
la serie del año 2003. Se puede observar que el 
pronóstico es aceptable debido a que la mayoría 
de los caudales observados están dentro del 
rango de los intervalos calculados a lo largo de 
la serie, a diferencia de los intervalos obtenidos 
en el evento ocurrido entre Sep/08/2003 y 
Sep/15/2003, donde los caudales observados 
quedan por fuera del rango calculado, guardan-
do relación con los datos que fueron agrupados 
en la figura 7 para la clase Q > 60 m3/s con L = 1.

La figura 10 presenta el pronóstico de cauda-
les realizado para la serie del año 2004 utilizan-
do el ARX+DKF para 24 horas de anticipación. 

En esta serie pronosticada, el periodo que 
mejor se ajustó fue de 36 días, considerando en 

dos el orden autorregresivo para caudales y en 
uno el número de días de precipitación, como ya 
se había mostrado anteriormente en el cuadro 
4. Las estadísticas para el pronóstico de la serie 
2004 se resumen en el cuadro 7.

Los mejores resultados obtenidos fueron 
para los caudales pronosticados para L = 1 o 
con 24 horas de anticipación de acuerdo con las 
estadísticas reportadas en el cuadro 7. 

La media de la serie pronosticada para L = 
1 tiende a alejarse relativamente en cuanto a la 
serie de datos observados y a las series pronos-
ticadas con L = 2, L = 3 y L = 4, respectivamente. 

En términos generales, a medida que se 
avanza en el tiempo, el pronóstico tiende a 
perder eficiencia reflejado en los valores de 
Nash-Sutcliffe, MSE y RMSE, con la tendencia 
a subestimar los datos según los valores repor-
tados por el PBE. 

Se agruparon los caudales pronosticados 
para la serie del año 2004, siguiendo la misma 
estructura con la que se realizó para los datos 
pronosticados en la serie del año 2003. En este 
caso, los rangos fueron para los Q < 20 m3/s y 

Figura 9. Intervalo de predicción al 95% de probabilidad para L = 1 o 24 horas de anticipación en la cuenca del río Turbio 
para la serie del año 2003.
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Figura 10. Pronóstico de caudales para L = 1 o 24 horas de anticipación mediante ARX + DKF en la cuenca del río Turbio para la 
serie del año 2004.

Q ≥ 20 m3/s de acuerdo con la dispersión de los 
datos obtenidos en la figura 11.

En la figura 12 se presentan los resultados 
para L = 1 gráficas (a, b), para L = 2 gráficas (c, 
d), para L = 3 gráficas (e, f) y para L = 4 gráficas 
(g, h). Se observa que los mejores ajustes se en-
cuentran para los caudales menores a 20 m3/s, 
tal como se observó en la serie del año 2003 (ver 
gráficas a, c, e, g). 

Se puede observar en las gráficas (b, d, f, h) 
de la figura 12, que los pronósticos para Q ≥ 
20 m3/s en todos los pasos del tiempo tienden 
a perder confiabilidad según el grado de dis-
persión con respecto a los valores observados, 
reflejados por el aumento del RMSE y disminu-

cion del coeficiente de Nash-Sutcliffe a medida 
que se hace el pronóstico con mayor tiempo de 
anticipación, tal como se reporta en los estadís-
ticos del cuadro 8.

Al igual que en los resultados obtenidos en 
la serie del año 2003, los errores de pronóstico 
se ajustaron a una distribución t student escalada 
para los diferentes pasos en el tiempo, generada 
por la presencia de datos atípicos, discutidos 
anteriormente.

Según el ajuste de los errores presentado 
en la figura 13, se calculó el intervalo de pre-
dicción al 95% de probabilidad con los datos 
para L = 1 o 24 h de anticipación. Se obtuvieron 
ajustes satisfactorios con respecto a los valores 

Cuadro 7. Resumen estadístico para los pronósticos a diferentes pasos mediante ARX + DKF en la cuenca del río Turbio 
para la serie del 2004.

Estadísticas Media MSE RMSE R2 Nash-Sutcliffe PBE

Caudales pronosticados L = 1 10.12 16.32 4.04 0.96 0.93 -5.64

Caudales pronosticados L = 2 9.64 39.13 6.26 0.91 0.82 -10.02

Caudales pronosticados L = 3 9.18 62.16 7.88 0.86 0.72 -14.14

Caudales pronosticados L = 4 8.76 83.13 9.12 0.80 0.62 -17.84

Caudales observados 8.16 - - - - -
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Figura 11. Diagramas de dispersión comparativos para pronósticos a 24 (a), 48 (b), 72 (c) y 96 horas (c) en la cuenca del río 
Turbio para la serie del año 2004.

observados (ver figura 14) en la mayoría de 
los intervalos calculados, a diferencia de los 
pronósticos realizados entre oct/01/2004 y 
oct/04/2004 para los cuales los intervalos no 
incluyeron los valores observados en el mismo 
periodo de tiempo, estableciendo una relación 
de semejanza con los datos agrupados en el 
rango de Q ≥ 20 m3/s y con 24 h de anticipación 
reportados en la figura 12.

Kim, Tachikawa y Takara (2004) hicieron la 
implementación del Filtro de Kalman con el mo-
delo CDRMV3 para el pronóstico de caudales y 
encontró que los mejores resultados pertenecían 
a los pronósticos realizados a una hora que para 
los obtenidos a 12 horas después, evaluados en 
términos de RMSE. 

Por otra parte, Hirpa et al. (2013) encon-
traron que en términos de Nash-Sutcliffe, los 

mejores resultados fueron para los pronósticos 
de caudales realizados para un día que para 
aquellos que fueron realizados con 15 días de 
anticipación, en el río Ganges y Brahmaputra 
de Asia meridional. 

En este trabajo se llevó a cabo el pronóstico 
de caudales para los años 2003 y 2004 porque 
eran los datos más completos y de más calidad, 
en la base de datos BANDAS, para alimentar el 
modelo de Filtro de Kalman. En trabajos poste-
riores se pudiera probar el Filtro de Kalman en 
cuencas con datos de caudales más completos; 
quizás intentar el acceso a la base de datos de 
caudales de la Comisión Federal de Electricidad 
(CFE). Sin embargo, el acceso a la base de datos 
de caudales de CFE no es libre, tal como ocurre 
con la base de datos BANDAS de la Comisión 
Nacional del Agua.
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Figura 12. Diagramas de dispersión agrupados para los pronósticos en diferentes pasos del tiempo utilizando datos 
del año 2004.
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Cuadro 8. Resumen estadístico para los pronósticos agrupados en diferentes pasos del tiempo utilizando datos del año 2004.

Pronósticos Rango MSE RMSE R2 Nash-Sutcliffe PBE

L = 1
24 h

Q < 20  m3/s 4.01 2.00 0.91 0.82 -1.38

Q ≥ 20  m3/s 114.77 10.71 0.86 0.67 -10.24

L = 2
48 h

Q < 20  m3/s 8.21 2.87 0.83 0.64 -2.75

Q ≥ 20  m3/s 286.45 16.92 0.65 0.19 -17.86

L = 3
72 h

Q < 20  m3/s 11.36 3.37 0.77 0.50 -4.61

Q ≥ 20  m3/s 468.61 21.65 0.42 -0.33 -24.40

L = 4
96 h

Q < 20  m3/s 13.38 3.66 0.73 0.42 -6.41

Q ≥ 20  m3/s 468.61 21.65 0.42 -0.33 -24.40

Figura 13. Funciones de distribución de probabilidad para los errores de pronóstico obtenidos con 24, 48, 72 y 96 horas de 
anticipación en la cuenca del río Turbio para la serie del año 2004.

Conclusiones

El pronóstico de caudales mediante el modelo 
ARX+DKF en la cuenca del río Turbio para los 
años 2003 y 2004 fue implementado de manera 

satisfactoria. Con base en los resultados obte-
nidos, los pronósticos realizados un paso hacia 
adelante L = 1 o con 24 horas de anticipación, 
presentan un mejor ajuste en términos de Nash-
Sutcliffe, MSE y RMSE, que los pronósticos rea-
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lizados a 2, 3 y 4 pasos hacia adelante, es decir, 
con 48, 72 y 96 horas de anticipación.

Los periodos previos de calibración para la 
metodología del modelo ARX+DKF son funda-
mentales para mejorar los pronósticos a través 
del tiempo, pues la función de respuesta en la 
cuenca puede ser variante según los periodos 
del ciclo hidrológico o debido a la presencia de 
eventos meteorológicos de consideración.

Los errores de pronóstico para las dos series 
evaluadas no se ajustaron a una distribución 
normal como teóricamente debería presentarse, 
pero la presencia de datos atípicos atribuidos a 
la calidad de la información involucrada genera 
distribuciones de colas pesadas pertenecientes a 
la familia de la distribución t de student. 

La implementación de técnicas, como el Fil-
tro de Kalman, para el pronóstico de caudales 
en cuencas con instrumentación muy pobre 
o deficiente puede ser una tarea compleja si 
la medición de caudales no es continua o es 
inexistente, o los registros son de mala calidad y 
corta duración. De hecho, por eso en este trabajo 
la implementación del Filtro de Kalman en la 

cuenca del río Turbio sólo se hizo para los años 
2003 y 2004.

En trabajos posteriores se pudiera hacer lo si-
guiente: (a) considerar la humedad antecedente 
como variable exógena en el Filtro de Kalman; 
(b) aplicar el Filtro de Kalman en cuencas instru-
mentadas por la CFE, en donde la continuidad y 
la calidad de registros pudiera ser más completa 
que los registros de BANDAS.
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