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Abstract 

All hydraulic works required by society are planned and dimensioned 
based on Floods Design. The most reliable estimation is made through 

frequency analysis (FA), consisting of fitting a probability distribution 
function (PDF) to the available data of annual maximum flows, in order 

to obtain the predictions sought. The FDP Log-Normal of three 
parameters of fit (LN3) was the first one of extensive application in the 

hydrological analyzes; the other two used have been established under 
precept for the FA of floods; the Log-Pearson type III (LP3) in U.S.A. 

and the General of Extreme Values (GVE) in England. The effects of 
climate change and the physical alterations of the basins, due to 

urbanization and deforestation, originate ascending tendencies in the 
flood registers; on the other hand, the construction of reservoirs leads 

to descending tendencies. Because of the above, the aforementioned 
data is non-stationary and its FA requires PDF to change over time, as a 

covariate. When the location parameter and the mean vary with time, in 

the quantile function of the LN3 distribution, its non-stationary model 
called LN31 is obtained. If the mean and the variance change over time, 

in the quantile function of the probabilistic model LP3, its non-stationary 
version designated LP31 is developed. Instead, when the fit parameters 
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of the GVE model change over time, its non-stationary version called 

GVE1 is obtained. In this study, two records with ascending tendencies 
are processed, one of 77 annual maximum flows and the other of 58 

annual maximum daily precipitation values. The results are analyzed 
and a selection of predictions is based on the lowest standard error of 

fit. Conclusions regarding the FA of series of extreme hydrological data 
with tendency highlight the simplicity of the method exposed, through 

the LN31, LP31 and GVE1 models. 

Keywords: Non-stationary hydrological data, bivariate linear 

regression, conditional moments, Log-Normal distribution, Log-Pearson 
type III distribution, General Extreme Value distribution, standard error 

of fit. 

 

Resumen 

Todas las obras hidráulicas que requiere la sociedad se planean y 

dimensionan con base en las crecientes de diseño. Su estimación más 
confiable se realiza a través del análisis de frecuencias (AF), que 

consiste en ajustar una función de distribución de probabilidades (FDP) 
a los datos disponibles de gastos máximos anuales, para obtener las 

predicciones buscadas. La FDP Log-Normal de tres parámetros de ajuste 
(LN3) fue la primera de aplicación extensa en los análisis hidrológicos; 

las otras dos utilizadas han sido establecidas bajo precepto para los AF 
de crecientes, la Log-Pearson tipo III (LP3) en EUA y la General de 

Valores Extremos (GVE) en Inglaterra. Por otra parte, los efectos del 

cambio climático y las alteraciones físicas de las cuencas por 
urbanización y deforestación originan en los registros crecientes 

tendencias ascendentes; en cambio, la construcción de embalses genera 
tendencias descendentes. Debido a lo anterior, los datos citados son no 

estacionarios y su AF requiere de FDP que vayan cambiando con el 
tiempo, como covariable. Cuando el parámetro de ubicación y la media 

varían con el tiempo, en la función de cuantiles de la distribución LN3, 
se obtiene su modelo no estacionario, denominado LN31. Si la media y la 

varianza cambian con el tiempo, en la función de cuantiles del modelo 
probabilístico LP3, se desarrolla su versión no estacionaria designada 

LP31. En cambio, cuando los parámetros de ajuste del modelo GVE 
cambian con el tiempo se obtiene su versión no estacionaria, 

denominada GVE1. En este estudio se procesan dos registros con 
tendencia ascendente: uno de 77 gastos máximos anuales y otro de 58 

valores de precipitación máxima diaria anuales. Se analizan los 
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resultados y la selección de predicciones se basa en el menor error 

estándar de ajuste. Las conclusiones destacan la sencillez del método 
expuesto en el AF de series de datos hidrológicos extremos con 

tendencia, a través de los modelos LN31, LP31 y GVE1. 

Palabras clave: datos hidrológicos no estacionarios, regresión lineal 
bivariada, momentos condicionales, distribución Log-Normal, 

distribución Log-Pearson tipo III, distribución General de Valores 
Extremos, error estándar de ajuste. 
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Introduction 

 

 

Generalities 

 

 

The hydrological design in the stages of planning, construction, 

operation and revision of hydraulic works, is based on the so-called 
Flood Design (CD, for its Spanish initials). That is in the case of 

reservoirs, protective levees, canals, bridges and/or urban drainage 
structures. CDs are maximum river flows associated with low 

probabilities of exceedance, whose most reliable estimate is made by 
means of the Flood Frequency Analysis (AFC), when hydrometric data of 

maximum annual flows are available. 

The AFC is a probabilistic procedure consisting of the following five 

steps: (1) verification of the statistical quality of the data or available 
sample; (2) selection of a probability distribution function (FDP), or 

probabilistic model from which the data is likely to come, (3) estimation 
of the FDP fitting parameters; (4) calculation of predictions or values 

associated with a certain probability of non-exceedance, it is made 
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based on the FDP tested and (5) selection of results, in an objective 

way, the best fit achieved with each FDP and method of estimating its 
parameters is sought (Kite, 1977; Stedinger, Vogel, & Foufoula-

Georgiou, 1993; Rao & Hamed, 2000; Meylan, Favre & Musy, 2012; 
Salas, Obeysekera & Vogel, 2018). 

When there are no hydrometric data, the estimation of the CD is 

addressed through the so-called hydrological methods, which transform 
design hietograms into hydrographs or peak flow sought (Majumdar & 

Kumar, 2012). Estimation of the design storms is based on the curves 

Intensity-Duration-Frequency, but due to the scarcity of pluviographic or 
rain-gauge records, it is usually done through the probabilistic analysis 

of rainfall records of maximum daily precipitation (PMD). These records 
are usually wider and have much higher spatial coverage (Teegavarapu, 

2012; Johnson & Sharma, 2017). 

The AFC is identical to the probabilistic analysis of PMD records and 
therefore, the first step of both procedures is to verify that the annual 

data samples of maximum flows or PMD have been generated by a 
stationary random process, that is, that has not changed over time. This 

means that the record to be processed must not have deterministic 

components such as trend, persistence, or abrupt changes in the mean. 

Unfortunately, the effects of global or regional climate change and the 
physical alterations suffered by the drainage basins or the surroundings 

of rain-gauge stations give rise to records of floods and of PMD that are 
nonstationary because they show trends. In general, the upward trends 

in the samples of floods are a consequence of urbanization or 
deforestation and the downward ones of the construction of reservoirs of 

use and/or control. In the series of annual PMD trends are commonly 
associated with the effects of regional climate change (Nguyen, El 

Outayek, Lim & Nguyen, 2017; Serago & Vogel, 2018; Salas et al., 

2018). 

Khaliq, Ouarda, Ondo, Gachon and Bobée (2006) concisely describe the 
various existing approaches to carry out the processing of non-

stationary records. On the other hand, El Adlouni, Ouarda, Zhang, Roy 
and Bobée (2007) expose a specific procedure based on the fitting of 

the Generalized Extreme Values (GVE) distribution by means of the 
generalized maximum likelihood method and compare the stationary 

model (GVE0) with the non-stationary that accepts linear dependence in 
its location parameter (u) with a covariate or GVE1 model. When the 

dependence is quadratic or curve, the GVE2 model is defined and when 
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there is a linear dependence also in the scale parameter (α) the GVE11 

model is established. El Adlouni and Ouarda (2008) present the 
generalization of the L-moment method to the fitting of the non-

stationary GVE1 and GVE2 distributions. 

The previous approaches, as well as that of Aissaoui-Fqayeh, El Adlouni, 
Ouarda and St. Hilaire (2009), allow the use of a covariate different 

from time, for example, those associated with global climatic behavior. 

Campos-Aranda (2018) presents examples of the application of the 

GVE1 and GVE2 models, using the generalization of the L-moments 

method and as covariates the time and the Southern Oscillation Index 
(SOI). 

Serago and Vogel (2018) suggest performing the probabilistic analysis 

of the non-stationary records, by means of a bivariate regression, which 
describes the relationship between the data (x) and the exogenous 

variable or covariate. Then they obtain the conditional mean, variance 
and asymmetry of x and y = ln (x), to apply them to the FDPs of three 

fitting parameters: Log-Normal (LN3), Log-Pearson type III (LP3) and 
stationary GVE and obtain their respective non-stationary models. The 

Log-Normal distribution was the first to reach a generalized application 

in the AFC, in the decade of the 1960s. LP3 and GVE functions were the 
first whose application was established under precept in the U.S.A. and 

England. GVE model became the classic distribution of the frequency 
analyses of hydrological extreme values and the LP3 function is the 

basic model of the AFC, therefore its non-stationary version (LP31), now 
developed by Serago and Vogel (2018), will certainly have great 

significance in the estimation of CDs, through records with trending. 

Salas et al. (2018) indicate that Serenaldi and Kilsby (2015), among 
other authors, have recommended that stationarity always remain as an 

option to apply in the AFC. This is justified by the fact that the non-

stationary condition detected may not be caused by physical causes of 
anthropogenic actions or climate change, but may have been caused by 

low-frequency components of the ocean-atmosphere system López-de-
la-Cruz & Francés, 2014; Álvarez-Olguín & Escalante-Sandoval, 2016) or 

by the effects of persistence (Khaliq et al., 2006). 

 

 

Objective 
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This study describes in detail the operating procedure of Serago and 
Vogel (2018), to apply the stationary LN3, LP3 and GVE distributions 

and the non-stationary distributions LN31, LP31 and GVE1 to records of 

floods and annual PMD showing linear trend. Two numerical applications 
are presented, the first to a record of 77 annual maximum flows and the 

second to a series of annual PMD with 58 data; both show an upward 
trend. The selection among the three FDPs is made based on the 

standard error of fit. The major contribution of this study is to describe 
and apply the non-stationary version of the LP3 distribution, applicable 

to records with trend, with a fairly simple method that corrects its 
quantile function. 

 

 

Operative theory and data to be processed 

 

 

Linear regression model 

 

 

The general regression model, whose structure and theoretical 

properties will be analyzed and applied is (Serago & Vogel, 2018; Salas 
et al., 2018): 

 

   ( )                         (1) 

 

in which, x are the data of the series of annual extreme hydrological 

values (floods, winds, levels, precipitations, temperatures, etc.), f(·) is a 

transformation of x to make it linear, w1 and w2 are the covariates of the 
climate or the land use, β1 and β2 are the coefficients of the model and ε 

is the model error, which is considered independent, with uniform 
variance and with Normal distribution. 
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Vogel, Yaindl and Walter (2011) and Prosdocimi, Kjeldsen and Svensson 

(2014) have found that the previous model, when y = ln(x) and w1 is 
considered the time (t) in years, it is useful to analyze trending floods in 

U.S.A. and U.K. rivers, regardless of whether the trend was significant 
or not. Serago and Vogel (2018) emphasize that such a simple model 

does not imply any hypothesis regarding the FDP of the variable y. 
Besides, they modify the linear regression to introduce the mean values 

(μ) of the variables, and then we have: 

 

       (    )        (2) 

 

now, the variable y is conditioned by the explicative variable w, β is the 
coefficient of regression and ε is once again the error of the model with 

mean zero and variance constant and equal to: 

 

  
  (    )    

       (3) 

 

where, ρ is the linear correlation coefficient between y and w. 
Considering that there are no missing values in the annual series of 

extreme hydrological values and that their size is n, then the estimates 
in equation (2) are (Prosdocimi et al., 2014; Serago & Vogel, 2018):  
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whereby: 

 

  
    

  
      (10) 

 

Applying equations (6) and (7) to the original data x, their mean ( x ) 
and standard deviation (σx) are defined. Their asymmetry coefficient is 
calculated with the expression: 
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Non-conditional moments 

 

 

According to Serago and Vogel (2018), when performing a stationary 
frequency analysis, the moments of x and y = ln(x) do not depend on 

the explanatory variable w, therefore, they are non-conditional 
moments and are defined by their means (μx, μy), standard deviations 

(σx, σy) and asymmetry coefficients (γx, γy). 

 

 

Conditional moments of y 
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Serago y Vogel (2018) use equation (2) to obtain the conditional 

moments that will be used in the non-stationary frequency analysis, 
without making any consideration about the FDP of the variable y. The 

mean of equation (2) leads to the expression of the expected value of y 
conditioned by w, this is: 

 

  ,       (     )     (12) 

 

Similarly, the conditional variance of y is obtained using equations (3) 

and (10), to obtain: 

 

  , 
    

  (    )    
    

       
     (13) 

 

The above equation shows that the conditional variance of y decreases 
as the explanatory power of the trend increases, tending to zero when ρ 

approaches the unit. On the contrary, when p tends to zero the 
conditional variance tends to the original. In general, in the non-

stationary frequencies analysis the conditional variance of y is lower 
than the non-conditional variance. Serago and Vogel (2018) find that 

the conditional asymmetry of y is: 

 

  ,      
          (14) 

 

The above expression indicates that the conditional asymmetry of y is 
equal to the non-conditional asymmetry, when the asymmetry of the 

explanatory variable (γw) is zero, case of w equal to time (t). 

 

 

Conditional moments of x 

 

 

Serago and Vogel (2018) apply the exponential function to equation (2) 

and obtain the expression: 
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in which, xw and yw are the conditioned values by the explanatory 
variable w. Note that hypothesis regard the FDP of xw and yw have not 

been established; but according to equation (15) it is probable that xw 
comes from a distribution Normal and that yw does it from a Log-Normal 

function. The above is valid because the only variable on the right side 
of equation (15) is the error of model ε and exp(ε), which are 

approximately Normal and Log-Normal, respectively. 

To obtain the expressions of the conditional moments of x, it will be 

accepted that xw approaches a Log-Normal distribution and then the 
equations that relate the mean, variance and asymmetry of x and of y 

=ln(x) are used in the Log-Normal distribution, which are (Serago & 
Vogel, 2018): 
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Finally, equations (16) to (18) are extended by applying expressions 
(12) and (13), to obtain: 
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Stationary LN3 distribution 

 

 

If a series of annual extreme hydrological values (y) defined as y = ln(x 
- a) follows a Normal distribution with mean and standard deviation 

equal to μy and σy, then the variable x has a Log-Normal distribution of 
three fitting parameters (LN3), being a its lower limit or location 

parameter. Predictions associated with a certain return period (Tr), 
which is the reciprocal of the exceedance probability, are estimated with 

the expressions (Kite, 1977; Rao & Hamed, 2000): 
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In the above expression, γx is calculated with equation (11). Finally, Z in 
equation (23) is the standardized normal variable; it is estimated based 

on the following algorithm (Zelen & Severo, 1972) for a non-exceedance 
probability (p):  

 

  ,  (    )-         (29) 

 

    
                

 

                     
     (30) 

 

with 

 

c0 = 2.515517  c1 = 0.802853  c2 = 0.010328 

d1 = 1.432788  d2 = 0.189269  d3 = 0.001308 

 

this when 0 < p < 0.50, to do Z = -Z; in case that 0.50 < p < 1.0 use: 

p = 1 – p in equation (29), without change Z.  

 

 

Non-stationary LN3 distribution 

 

 

The quantile function of the Log-Normal distribution of three non-

stationary fitting parameters (LN31) is similar to equation (23), but it 
uses conditional moments and variables (Serago & Vigel, 2018): 
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To quantify   ,  with equation (24), equations (20) and (21) are used 

and to evaluate   ,  by means of expression (25) the equation (21) is 

used. In equation (31), σy is defined with the expression (26), due to 

the fact that is only a function of γx (remember equation (14)). 

 

 

Stationary LP3 distribution 

 

 

If a series of annual extreme hydrological values (y) defined as y = ln 

(x) follows a Pearson type III distribution, also known as a three 

parameter Gamma, then variable x has a Log-Pearson type III 
distribution (LP3). Predictions associated with a certain return period 

(Tr), which is the reciprocal of the exceedance probability, are estimated 
with the expressions (WRC, 1977; Kite, 1977; Bobée & Ashkar, 1991): 

 

     ̅             (32) 

 

and 

 

       (   )      (33) 

 

In equation (32), Kp is the so-called frequency factor, it is a 
standardized Pearson type III variable whose approximation is achieved 

based on the standardized normal variable Z (equations (29) and (30)) 

and the corrected asymmetry coefficient (γc), with the following 
equations (Kite, 1977): 
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Non-stationary LP3 distribution 

 

 

Equation (33) is actually the quantile function of the LP3 distribution, 
whose non-stationary version (LP31) is obtained by substituting the 

conditional moments of y (equations (12) and (13)), that is (Serago & 
Vogel, 2018): 
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The constant values of the previous expression, from left to right, are 

defined in equations: (6), (9), (4), (34), (7), (9) and (5), these last 
three, squared. For the calculation of Kp with the equation (34), Serago 

and Vogel (2018) establish a different expression to equation (35) for 
the asymmetry coefficient and define it as follows:  
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Stationary GVE Distribution 

 

 

The Generalized Extreme Values (GVE) distribution includes three 

families of functions: the Gumbel that are straight lines on the Gumbel-
Powell probability paper (Chow, 1964), the Fréchet that are curves with 

upward concavity and lower limit, and the Weibull that have downward 
concavity and upper limit. Its quantile function is the following: 

 

      
 

 
*  ,   ( )- +     (39) 

 

in which, u, α and k are the location, scale and shape parameters and p 

is the probability of non-exceedance. Bhunya, Jain, Ojha y Agarwal 
(2007) have proposed expressions to estimate the fitting parameters of 

the GVE, based on the mean ( ̅), standard deviation ( xσ ) and coefficient 

of asymmetry ( xγ ), that is, based on the non-conditional moments; 

these are: when -0.70 ≤ γx ≤ 1.15 
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and when γx ≥ 1.15 

 

           *      ,        (          )-+  (41) 

 

for -0.50 ≤k ≤ 0.50, we have: 

 

     (                        
           )  (42) 

 

when 0.010 ≤ k ≤ 0.50 
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   ̅     (                   
       )  (43) 

 

and when -0.50 ≤ k ≤ 0.010, the following equation (44) is applied: 

 

   ̅     (                        
                     ) (44) 

 

The values of  ̅ and σx are obtained with equations (6) and (7), using x 

instead of y. Serago and Vogel (2018) use equation (11) to estimate the 
coefficient of asymmetry (γx). 

 

 

Non-stationary GVE Distribution 

 

 

When equations of the conditional moments of x are applied, defined by 
equations (20), (21), (22), and (19), in equations (40) to (44), the 

fitting parameters of GVE distribution the non-stationary (GVE1) are 
obtained, and they are named:   , ,   ,  and   , , whose quantile 

function is (Serago & Vogel, 2018): 

 

   ,    ,  
  , 

  , 
{  ,   ( )-  , }    (45) 

 

 

Standard error of fit 

 

 

The standard error of fit (EEA) has been established as a quantitative 
objective indicator, because it evaluates the standard deviation of the 

differences between the observed values and those estimated with the 
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FDP that is tested; in this study the models: LN3, LP3, GVE, LN31, LP31 

and GVE1. Its expression is the following (Kite, 1977): 

 

    0
∑ (     ̂)
 
   

    
1
   

     (46) 

 

in which, n and np are the number of data and of fitting parameters, in 
this case three, for the stationary FDP and four for the non-stationary 

ones; Xi are the data ordered from least to highest and  ̂  are the values 

estimated with the stationary quantile function (equations (23), (33), 
and (39)) and non-stationary (equations (31), (37), and (45)), for a 

probability of non-exceedance estimated with the Blom formulas for the 

models LN3, LN31, LP3 and LP31 and of Gringorten for the GVE and GVE1 
distributions, as suggested by Serago and Vogel (2018): 

 

 (   )    
       

      
     (47) 

 

 (   )    
      

      
     (48) 

 

where, m is the order number of the datum, with 1 for the least and n 
for the highest. 

 

 

Approach of the probabilistic analysis 

 

 

The EEA helps to select, among different distributions applied to the 
data or sample available, the one of better fit. Logically, such models 

must be of same type, stationary or non-stationary. Then, in each record 

to be processed, the LN3 and LN31 distributions are applied first, then 
the LP3 and LP31 and finally, the GVE and GVE1; their EEA values are 

analyzed and the predictions sought are adopted. In this process, when 
the EEAs are similar, a distribution can be adopted based on 
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hydrological safety judgments, that is, the one that reports the most 

unfavorable or critical predictions. 

By means of equations (31), (37) and (45) predictions are calculated 
with return periods (Tr) of 2, 25, 50 and 100 years, through the record 

period, applying the variable wi in the interval from 1 to n. The first 
prediction is the median, since its probability of non-exceedance (F) is 

50% and the following three are calculated for complementary 
probabilities, to define its higher and lower value (Park, Kang, Lee, & 

Kim, 2011), that is, for the following values: F = 0.96 and F = 0.04 for 

the Tr of 25 years; F = 0.98 and F = 0.02 for the Tr of 50 years and F = 
0.99 and F = 0.01 for the Tr of 100 years. 

Predictions that use the variable wi equal to the size of the record (n) 

correspond to the end of the historical record. Future predictions are 
possible using as magnitude of the variable wi, the sum of the size of 

the record (n) plus the lapse in years to the future. Extrapolations of the 
predictions were made in three future dates, 10, 25 and 50 years after 

the available record is concluded. 

Mudersbach and Jensen (2010) establish that the hydrological design of 

hydraulic works must be reliable or safe until the end of its useful life or 
future date. If the record of floods or annual PMD available to estimate 

the CDs, shows an upward trend, then their predictions should be 
estimated at such future date so that their hydrological sizing is correct 

and not unsafe. 

In this context, Salas et al. (2018) have suggested shortening the useful 

life values to 25 or 50 years and at the same time making the design 
and construction of hydraulic works more versatile, so that they allow 

for extensions and/or modifications at lower costs for society. 

 

 

Records to be processed 

 

 

The first series of extreme hydrological data corresponds to the annual 

maximum flows of the Neponset River in Norwood, Massachusetts, 
U.S.A., in the period from 1939 to 2015 (n = 77). This drainage basin 

has 89.8 km2, with 16% of its extension of impermeable area, which has 
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increased its maximum flows, but it is also a river with small reservoirs 

for municipal and industrial supplies (Serago & Vogel, 2018). The 
approximate values read from a logarithmic figure of these authors are 

shown in Table 1 and Figure 1; it is observed that such record shows 
slight upward trend. 

 

Table 1. Annual maximum flows (Q, m3/s) of the Neponset River, 
U.S.A. (Serago & Vogel, 2018). 

No. Q No. Q No. Q No. Q 

1 12.4 21  9.0 41 23.9 61 13.3 

2  6.4 22  6.9 42 12.6 62  9.3 

3  6.7 23  8.9 43  8.7 63 20.8 

4  8.5 24 10.4 44 18.5 64  7.3 

5  6.5 25 13.5 45 12.9 65  9.6 

6  5.7 26 11.0 46 26.7 66 12.4 

7  7.2 27  8.6 47  8.7 67 14.1 

8 11.7 28  5.5 48 11.2 68 24.2 

9  6.0 29 11.0 49 19.6 69 14.4 

10 11.2 30 31.7 50 10.9 70 16.2 

11  4.7 31 17.9 51  8.9 71 16.9 

12  5.0 32 19.2 52 17.6 72 33.0 

13  7.1 33  8.4 53  9.0 73 12.9 

14  9.4 34 12.1 54  7.0 74 11.0 

15 11.1 35 12.3 55 11.1 75 13.3 

16 12.3 36 11.4 56 10.3 76 14.1 

17 41.1 37  8.5 57  7.1 77 14.2 

18 13.7 38 19.4 58 10.4 - - 

19  7.0 39 11.1 59 21.7 - - 

20 10.8 40 15.0 60 30.7 - - 
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Figure 1. Chronological data series and estimated prediction curves 

with the LP31 distribution in a hydrometric station of the Neponset River, 

USA. 

 

La second series of extreme hydrological data that was analyzed, comes 
from Campos-Aranda (2016) and corresponds to the annual maximum 

daily precipitations (PMD) ) of the Zacatecas climatological station, in 

the city of the same name in Mexico, with a record of 58 years in the 
period from 1953 to 2010. The series has an upward trend, as shown in 

Figure 2. 
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Figure 2. Chronological series of the annual maximum daily 
precipitation and estimated prediction curves with the LP31 distribution 

in the Zacatecas climatological station, Mexico. 

 

 

Results and discussion 

 

 

Predictions in the Neponset River 
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Table 2 shows a selection of the predictions obtained during the 

historical record with the LN31 distribution. The basic parameters of this 
non-stationary fitting were: ρ = 0.414, β = 0.0085,   ,       , 

  ,        ,            and          . Table 3 shows the EEA and the 

predictions of the stationary LN3 model with a = 0.5879 and           

and of the non-stationary, logically at the end of the historical record (n) 
and in the three future scenarios proposed. 

 

Table 2. Predictions (m3/s) in the historical record obtained with the 
LN31 distribution in the Neponset River, USA. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 12.4  8.3 17.6 4.5 20.3 4.2 23.0 3.9 

10 11.2  9.0 19.0 4.9 21.9 4.5 24.9 4.2 

20 10.8  9.7 20.7 5.3 23.8 4.9 27.0 4.6 

30 31.7 10.6 22.5 5.8 25.9 5.3 29.4 5.0 

40 15.0 11.5 24.5 6.3 28.2 5.8 32.0 5.4 

50 10.9 12.6 26.6 6.9 30.7 6.3 34.9 5.9 

60 30.7 13.7 29.0 7.5 33.4 6.9 37.9 6.4 

70 16.2 14.9 31.6 8.1 36.3 7.5 41.3 7.0 

77 14.2 15.8 33.5 8.6 38.5 7.9 43.8 7.4 

 

Table 3. Predictions (m3/s) in the stationary LN3 and non-stationary 

LN31 distributions in the Neponset River, USA. 

Applied 
distribution 

EEA 

(m3/s) 

Return periods in years  

5 10 25 50 100 500 1 000 

LN3 1.00 17.4 21.7 27.5 32.0 36.8 48.8 54.4 

LN31 (n) 4.67 22.3 27.1 33.5 38.5 43.8 57.0 63.2 

LN31 (n+10) 4.67 24.3 29.5 36.4 41.9 47.7 62.1 68.8 

LN31 (n+25) 4.67 27.6 33.4 41.4 47.6 54.1 70.5 78.1 

LN31 (n+50) 4.67 34.1 41.3 51.1 58.8 66.8 87.1 96.5 

 

Table 4 shows a portion of the predictions obtained during the historical 

record with the LP31 distribution. The basic parameters of this non-
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stationary fitting were:  ̅         and          , ρ = 0.414, β = 0.0085 

and γc = 0.53338. Table 5 shows the EEA and the predictions of the 
stationary LP3 model with γc = 0.53878 and of the non-stationary, at 

the end of the historical record (n) and in the three future dates 
analyzed. 

 

Table 4. Predictions (m3/s) in the historical record obtained with the 
LP31 distribution in the Neponset River, USA. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 12.4  8.1 18.8  4.4 22.2  4.1 26.1  3.8 

10 11.2  8.8 20.2  4.8 24.0  4.4 28.1  4.1 

20 10.8  9.6 22.0  5.2 26.1  4.8 30.6  4.4 

30 31.7 10.4 24.0  5.6 28.4  5.2 33.3  4.8 

40 15.0 11.3 26.1  6.1 30.9  5.6 36.3  5.3 

50 10.9 12.3 28.4  6.7 33.6  6.1 39.5  5.7 

60 30.7 13.4 30.9  7.3 36.6  6.7 42.9  6.2 

70 16.2 14.6 33.6  7.9 39.8  7.3 46.7  6.8 

77 14.2 15.5 35.7  8.4 42.3  7.7 49.6  7.2 

 

Table 5. Predictions (m3/s) in the stationary LP3 and non-stationary 
LP31 distributions in the Neponset River, USA. 

Applied  

distribution 

EEA 

(m3/s) 

Return periods in years  

5 10 25 50 100 500 1 000 

LP3 0.75 16.8 21.3 28.0 33.8 40.3  58.8  68.6 

LP31 (n) 2.71 22.4 27.8 35.7 42.3 49.6  69.9  80.4 

LP31 (n+10) 2.71 24.4 30.3 38.8 46.0 54.0  76.1  87.5 

LP31 (n+25) 2.71 27.7 34.4 44.1 52.2 61.3  86.4  99.3 

LP31 (n+50) 2.71 34.2 42.5 54.4 64.5 75.7 106.7 122.7 

 

Table 6 shows a part of predictions during the historical record, 
estimated with the GVE1 distribution, with   ,         and parameters 

of fit:   ,        ,   ,         and   ,          On the other hand, 

Table 7 shows the EEA and the predictions of the stationary GVE model 
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with γx = 1.8361, u = 9.817, α = 4.607 and k = -0.101, as well as the 

non-stationary at the end of record and in the future in the three dates 
proposed. 

 

Table 6. Predictions (m3/s) in the historical record obtained with the 
GVE1 distribution in the Neponset River, USA. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 12.4  8.3 17.4 4.7 20.3 4.3 23.4 3.9 

10 11.2  9.0 18.8 5.1 21.9 4.6 25.3 4.3 

20 10.8  9.8 20.5 5.5 23.8 5.0 27.5 4.6 

30 31.7 10.6 22.3 6.0 25.9 5.5 30.0 5.0 

40 15.0 11.6 24.2 6.5 28.2 5.9 32.6 5.5 

50 10.9 12.6 26.4 7.1 30.7 6.5 35.5 6.0 

60 30.7 13.7 28.7 7.7 33.4 7.0 38.6 6.5 

70 16.2 14.9 31.2 8.4 36.4 7.7 42.0 7.1 

77 14.2 15.8 33.1 8.9 38.6 8.1 44.6 7.5 

 

Table 7. Predictions (m3/s) in the stationary GVE and non-stationary 
GVE1 distributions in the Neponset River, USA. 

Applied 

distribution 

EEA 

(m3/s) 

Return periods in years  

5 10 25 50 100 500 1 000 

GVE 1.01 17.3 21.5 27.2 31.9 36.8 49.7  55.9 

GVE1 (n) 4.65 21.9 26.5 33.1 38.6 44.6 60.9  69.1 

GVE1 (n+10) 4.65 23.9 28.9 36.0 42.0 48.5 66.3  75.2 

GVE1 (n+25) 4.65 27.1 32.8 40.9 47.7 55.1 75.2  85.4 

GVE1 (n+50) 4.65 33.5 40.5 50.6 58.9 68.1 92.9 105.5 

 

Based on the values of the EEA shown in Tables 3, 5 and 7, the 
predictions or results of LP3 and LP31 distributions are adopted, against 

those of the LN3 and LN31, GVE and GVE1 models, because they lead to 
their lowest magnitudes, indicating with it, a better fitting for the 

available data. Predictions of the non-stationary LP31 distribution were 
found to be the most severe or critical, thus providing greater safety in 
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the hydrological design at the end of the useful life of 10, 25 or 50 

years. 

Figure 1 shows the chronological series of the Neponset River floods, 
U.S.A. and their estimated prediction curves with the non-stationary 

LP31 distribution. 

 

 

Predictions in the Zacatecas station 

 

 

Table 8 shows a part of the predictions obtained during the historical 

record with the LN31 distribution. The basic non-stationary parameters 
of fit were: ρ = 0.298, β = 0.0057,   ,          ,   ,          γc = 

0.42827 and 1411.0yσ . Table 9 shows the EEA and predictions of the 

stationary LN3 model with a = -54.6459 and μy = 4.6091 and of the 
non-stationary, logically at the end of the historical record (n) and in the 

three future scenarios proposed. 

 

Table 8. Predictions (mm) in the historical record obtained with the 

LN31 distribution in the Zacatecas station, México. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 35.1 38.8 63.3 19.7 68.2 16.9  72.7 14.4 

10 26.4 40.9 66.6 20.8 71.7 17.8  76.5 15.2 

20 44.0 43.3 70.5 22.0 75.9 18.8  81.0 16.1 

30 29.2 45.8 74.6 23.3 80.4 19.9  85.7 17.0 

40 32.0 48.5 79.0 24.6 85.1 21.1  90.8 18.0 

50 41.0 51.3 83.6 26.1 90.0 22.3  96.1 19.1 

58 65.0 53.7 87.5 27.3 94.2 23.3 100.5 19.9 

 

Table 9. Predictions (mm) of the stationary LN3 and non-stationary 
LN31 distributions in the Zacatecas station, Mexico. 

Applied EEA Return periods in years  
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distribution (mm) 5 10 25 50 100 500 1 000 

LN3 1.52 58.4  65.6  73.9  79.5  84.8  96.0 100.6 

LN31 (n) 8.93 68.9  77.6  87.5  94.2 100.5 114.1 119.6 

LN31 (n+10) 8.93 72.9  82.1  92.6  99.7 106.4 120.7 126.6 

LN31 (n+25) 8.93 79.4  89.4 100.8 108.6 115.9 131.5 137.8 

LN31 (n+50) 8.93 91.5 103.0 116.2 125.1 133.5 151.5 158.8 

 

Table 10 shows a portion of the estimated predictions during the 

historical record with the LP3 1 distribution. The basic parameters of this 
non-stationary fitting were:  ̅        , 3218.0yσ , ρ = 0.298, β = 

0.0057 and γc = -0.50869. Table 11 shows the EEA and the predictions 

of the stationary LP3 model with γc = -0.51495 and of the non-
stationary at the end of the record and in the three future dates 

analyzed. 

 

Table 10. Predictions (mm) in the historical record obtained with the 

LP31 distribution, in the Zacatecas station, Mexico. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 35.1 38.9 61.3 21.0 65.3 18.6 69.0 16.6 

10 26.4 40.9 64.5 22.2 68.8 19.6 72.6 17.4 

20 44.0 43.3 68.2 23.4 72.8 20.7 76.9 18.4 

30 29.2 45.8 72.2 24.8 77.0 21.9 81.3 19.5 

40 32.0 48.5 76.4 26.3 81.5 23.2 86.1 20.7 

50 41.0 51.3 80.9 27.8 86.3 24.6 91.1 21.9 

58 65.0 53.7 84.7 29.1 90.3 25.7 95.4 22.9 

 

Table 11. Predictions (mm) of the LP3 stationary and LP31 non-

stationary distributions in the Zacatecas station, Mexico. 

Applied 
distribution: 

EEA 

(mm) 

Return periods in years 

5 10 25 50 100 500 1 000 

LP3 1.51 58.6  65.8  73.6  78.7  83.3  92.6  96.1 

LP31 (n) 4.46  68.1  76.0  84.7  90.3  95.4 105.5 109.3 

LP31 (n+10) 4.46  72.1  80.5  89.6  95.6 100.9 111.7 115.7 
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LP31 (n+25) 4.46  78.5  87.6  97.6 104.1 109.9 121.6 126.0 

LP31 (n+50) 4.46  90.4 101.0 112.5 120.0 126.7 140.1 145.2 

 

Table 12 shows part of the predictions during the historical record, 

estimated with the GVE1 distribution, with 1646.2
wx

γ  and fitting 

parameters:   ,        ,   ,         and   ,        . In contrast, 

Table 13 show the EEA and the predictions of the stationary GVE model 

with γx = 0.4283, u = 40.896, α = 13.166 and k = 0.152, as well as the 
non-stationary, record term and in the three future dates proposed. 

 

Table 12. Predictions (mm) in the historical record estimated with the 
GVE1 distribution in the Zacatecas station, Mexico. 

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years 

Sup. Inf. Sup. Inf. Sup. Inf. 

1 35.1 36.9 65.4 25.4  74.3 24.1  83.9 23.0 

10 26.4 38.9 68.9 26.7  78.2 25.3  88.3 24.2 

20 44.0 41.2 72.9 28.3  82.8 26.8  93.5 25.6 

30 29.2 43.6 77.1 29.9  87.6 28.4  99.0 27.1 

40 32.0 46.1 81.6 31.7  92.7 30.0 104.7 28.7 

50 41.0 48.8 86.4 33.5  98.1 31.8 110.9 30.4 

58 65.0 51.1 90.4 35.1 102.7 33.3 116.0 31.8 

 

Table 13. Predictions (mm) of the stationary GVE and non-stationary 
GVE1 distributions in the Zacatecas station, Mexico.  

Applied 
distribution 

EEA 

(m3/s) 

Return periods in years 

5 10 25 50 100 500 1 000 

GVE 1.44 58.6  66.0  74.2  79.6  84.5  93.8  97.2 

GVE1 (n) 9.45 65.1  75.6  90.4 102.7 116.0 151.9 169.8 

GVE1(n+10) 9.45 68.9  80.0  95.7 108.7 122.8 160.8 179.7 

GVE1(n+25) 9.45 75.0  87.1 104.2 118.4 133.7 175.1 195.7 

GVE1(n+50) 9.45 86.5 100.4 120.1 136.4 154.1 201.8 225.5 

 

Based on the values of the EEA shown in Tables 9, 11 and 13 the 
predictions or results of the GVE and LP31 models are adopted, because 
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they lead to their lowest magnitudes, thus indicating a better fitting to 

the available data. The predictions of the three stationary models are 
almost identical. The GVE1 function reports more extreme or critical 

predictions, but its EEA is more than the double obtained with the LP31 
distribution; therefore they were not selected. 

Figure 2 shows the chronological series of annual PMD of the Zacatecas 

climatological station, Mexico and its straight lines of estimated 
predictions with non-stationary LP31 distribution. 

 

 

Conclusions 

 

 

The frequency analysis (AF) of records of annual extreme hydrological 

data that are not homogeneous, when presenting trend, will be quite 
frequent in the immediate future, due to the effects of global or regional 

climate change and the physical impacts of alterations in the basins of 
drainage, such as urbanization and deforestation, as well as the 

construction of reservoirs. 

Another aspect that will favor such non-stationary AF is to provide 

hydrological protection at the end of the useful life of a hydraulic work. 

The above, requires taking into account the trend observed in the record 

to be processed, in order to obtain more reliable predictions at a future 
date, when the useful life of the hydraulic work that is dimensioned 

ends. This is important when the record shows upward trend. 

The method described and developed by Serago and Vogel (2018) and 
also exposed by Salas et al. (2018), based on the conditional moments 

of y = ln(x) and of x, which are the available data, allows us to obtain, 

in a simple way the functions of non-stationary quantile, of three of the 
most used probability distributions and highest universality in the AF of 

floods and other extreme annual hydrological data, which are the Log-
Normal (LN3), the Log-Pearson type III (LP3) and the Generalized 

Extreme Values (GVE). 

The method uses time as a covariate, with a linear trend and therefore 
the non-stationary models LN31, LP31 and GVE1 are fitted. Quantile 
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functions, which allow obtaining their predictions sought, are only 

slightly more complicated than their stationary versions, which makes 
this approach quite practical, to obtain predictions in trending records, 

within them, at their end and in future dates. This was demonstrated in 
the two numerical applications described; whose selection of better 

fitting achieved was based on the standard error of fit, a technique 
widely used in the AFs. 
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