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Abstract

All hydraulic works required by society are planned and dimensioned
based on Floods Design. The most reliable estimation is made through
frequency analysis (FA), consisting of fitting a probability distribution
function (PDF) to the available data of annual maximum flows, in order
to obtain the predictions sought. The FDP Log-Normal of three
parameters of fit (LN3) was the first one of extensive application in the
hydrological analyzes; the other two used have been established under
precept for the FA of floods; the Log-Pearson type III (LP3) in U.S.A.
and the General of Extreme Values (GVE) in England. The effects of
climate change and the physical alterations of the basins, due to
urbanization and deforestation, originate ascending tendencies in the
flood registers; on the other hand, the construction of reservoirs leads
to descending tendencies. Because of the above, the aforementioned
data is non-stationary and its FA requires PDF to change over time, as a
covariate. When the location parameter and the mean vary with time, in
the quantile function of the LN3 distribution, its non-stationary model
called LN3; is obtained. If the mean and the variance change over time,
in the quantile function of the probabilistic model LP3, its non-stationary
version designated LP3; is developed. Instead, when the fit parameters
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of the GVE model change over time, its non-stationary version called
GVE; is obtained. In this study, two records with ascending tendencies
are processed, one of 77 annual maximum flows and the other of 58
annual maximum daily precipitation values. The results are analyzed
and a selection of predictions is based on the lowest standard error of
fit. Conclusions regarding the FA of series of extreme hydrological data
with tendency highlight the simplicity of the method exposed, through
the LN3,, LP3; and GVE; models.

Keywords: Non-stationary hydrological data, bivariate linear
regression, conditional moments, Log-Normal distribution, Log-Pearson
type III distribution, General Extreme Value distribution, standard error
of fit.

Resumen

Todas las obras hidraulicas que requiere la sociedad se planean y
dimensionan con base en las crecientes de disefio. Su estimacién mas
confiable se realiza a través del andlisis de frecuencias (AF), que
consiste en ajustar una funcion de distribucién de probabilidades (FDP)
a los datos disponibles de gastos maximos anuales, para obtener las
predicciones buscadas. La FDP Log-Normal de tres parametros de ajuste
(LN3) fue la primera de aplicacién extensa en los analisis hidroldgicos;
las otras dos utilizadas han sido establecidas bajo precepto para los AF
de crecientes, la Log-Pearson tipo III (LP3) en EUA y la General de
Valores Extremos (GVE) en Inglaterra. Por otra parte, los efectos del
cambio climatico y las alteraciones fisicas de las cuencas por
urbanizacién y deforestacion originan en los registros crecientes
tendencias ascendentes; en cambio, la construccién de embalses genera
tendencias descendentes. Debido a lo anterior, los datos citados son no
estacionarios y su AF requiere de FDP que vayan cambiando con el
tiempo, como covariable. Cuando el parametro de ubicacidon y la media
varian con el tiempo, en la funciéon de cuantiles de la distribucion LN3,
se obtiene su modelo no estacionario, denominado LN3;. Si la media y la
varianza cambian con el tiempo, en la funcidon de cuantiles del modelo
probabilistico LP3, se desarrolla su versiéon no estacionaria designada
LP3;. En cambio, cuando los pardmetros de ajuste del modelo GVE
cambian con el tiempo se obtiene su versidn no estacionaria,
denominada GVE;. En este estudio se procesan dos registros con
tendencia ascendente: uno de 77 gastos maximos anuales y otro de 58
valores de precipitacion maxima diaria anuales. Se analizan los
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resultados y la seleccion de predicciones se basa en el menor error
estandar de ajuste. Las conclusiones destacan la sencillez del método
expuesto en el AF de series de datos hidrolégicos extremos con
tendencia, a través de los modelos LN3;, LP3; y GVE;.

Palabras clave: datos hidroldgicos no estacionarios, regresion lineal
bivariada, momentos condicionales, distribucién Log-Normal,
distribucién Log-Pearson tipo III, distribucion General de Valores
Extremos, error estandar de ajuste.
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Introduction

Generalities

The hydrological design in the stages of planning, construction,
operation and revision of hydraulic works, is based on the so-called
Flood Design (CD, for its Spanish initials). That is in the case of
reservoirs, protective levees, canals, bridges and/or urban drainage
structures. CDs are maximum river flows associated with Ilow
probabilities of exceedance, whose most reliable estimate is made by
means of the Flood Frequency Analysis (AFC), when hydrometric data of
maximum annual flows are available.

The AFC is a probabilistic procedure consisting of the following five
steps: (1) verification of the statistical quality of the data or available
sample; (2) selection of a probability distribution function (FDP), or
probabilistic model from which the data is likely to come, (3) estimation
of the FDP fitting parameters; (4) calculation of predictions or values
associated with a certain probability of non-exceedance, it is made
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based on the FDP tested and (5) selection of results, in an objective
way, the best fit achieved with each FDP and method of estimating its
parameters is sought (Kite, 1977; Stedinger, Vogel, & Foufoula-
Georgiou, 1993; Rao & Hamed, 2000; Meylan, Favre & Musy, 2012;
Salas, Obeysekera & Vogel, 2018).

When there are no hydrometric data, the estimation of the CD is
addressed through the so-called hydrological methods, which transform
design hietograms into hydrographs or peak flow sought (Majumdar &
Kumar, 2012). Estimation of the design storms is based on the curves
Intensity-Duration-Frequency, but due to the scarcity of pluviographic or
rain-gauge records, it is usually done through the probabilistic analysis
of rainfall records of maximum daily precipitation (PMD). These records
are usually wider and have much higher spatial coverage (Teegavarapu,
2012; Johnson & Sharma, 2017).

The AFC is identical to the probabilistic analysis of PMD records and
therefore, the first step of both procedures is to verify that the annual
data samples of maximum flows or PMD have been generated by a
stationary random process, that is, that has not changed over time. This
means that the record to be processed must not have deterministic
components such as trend, persistence, or abrupt changes in the mean.

Unfortunately, the effects of global or regional climate change and the
physical alterations suffered by the drainage basins or the surroundings
of rain-gauge stations give rise to records of floods and of PMD that are
nonstationary because they show trends. In general, the upward trends
in the samples of floods are a consequence of urbanization or
deforestation and the downward ones of the construction of reservoirs of
use and/or control. In the series of annual PMD trends are commonly
associated with the effects of regional climate change (Nguyen, El
Outayek, Lim & Nguyen, 2017; Serago & Vogel, 2018; Salas et al.,
2018).

Khalig, Ouarda, Ondo, Gachon and Bobée (2006) concisely describe the
various existing approaches to carry out the processing of non-
stationary records. On the other hand, El Adlouni, Ouarda, Zhang, Roy
and Bobée (2007) expose a specific procedure based on the fitting of
the Generalized Extreme Values (GVE) distribution by means of the
generalized maximum likelihood method and compare the stationary
model (GVEp) with the non-stationary that accepts linear dependence in
its location parameter (u) with a covariate or GVE; model. When the
dependence is quadratic or curve, the GVE, model is defined and when
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there is a linear dependence also in the scale parameter (a) the GVEi;
model is established. El Adlouni and Ouarda (2008) present the
generalization of the L-moment method to the fitting of the non-
stationary GVE; and GVE; distributions.

The previous approaches, as well as that of Aissaoui-Fgayeh, El Adlouni,
Ouarda and St. Hilaire (2009), allow the use of a covariate different
from time, for example, those associated with global climatic behavior.
Campos-Aranda (2018) presents examples of the application of the
GVE; and GVE, models, using the generalization of the L-moments
method and as covariates the time and the Southern Oscillation Index
(SOI).

Serago and Vogel (2018) suggest performing the probabilistic analysis
of the non-stationary records, by means of a bivariate regression, which
describes the relationship between the data (x) and the exogenous
variable or covariate. Then they obtain the conditional mean, variance
and asymmetry of x and y = In (x), to apply them to the FDPs of three
fitting parameters: Log-Normal (LN3), Log-Pearson type III (LP3) and
stationary GVE and obtain their respective non-stationary models. The
Log-Normal distribution was the first to reach a generalized application
in the AFC, in the decade of the 1960s. LP3 and GVE functions were the
first whose application was established under precept in the U.S.A. and
England. GVE model became the classic distribution of the frequency
analyses of hydrological extreme values and the LP3 function is the
basic model of the AFC, therefore its non-stationary version (LP31), now
developed by Serago and Vogel (2018), will certainly have great
significance in the estimation of CDs, through records with trending.

Salas et al. (2018) indicate that Serenaldi and Kilsby (2015), among
other authors, have recommended that stationarity always remain as an
option to apply in the AFC. This is justified by the fact that the non-
stationary condition detected may not be caused by physical causes of
anthropogenic actions or climate change, but may have been caused by
low-frequency components of the ocean-atmosphere system Lépez-de-
la-Cruz & Francés, 2014; Alvarez-Olguin & Escalante-Sandoval, 2016) or
by the effects of persistence (Khaliq et al., 2006).

Objective
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This study describes in detail the operating procedure of Serago and
Vogel (2018), to apply the stationary LN3, LP3 and GVE distributions
and the non-stationary distributions LN3;, LP3; and GVE; to records of
floods and annual PMD showing linear trend. Two numerical applications
are presented, the first to a record of 77 annual maximum flows and the
second to a series of annual PMD with 58 data; both show an upward
trend. The selection among the three FDPs is made based on the
standard error of fit. The major contribution of this study is to describe
and apply the non-stationary version of the LP3 distribution, applicable
to records with trend, with a fairly simple method that corrects its
quantile function.

Operative theory and data to be processed

Linear regression model

The general regression model, whose structure and theoretical
properties will be analyzed and applied is (Serago & Vogel, 2018; Salas
et al., 2018):

y=f(x)= Bo+Pi-wi+pf-wy++¢ (1)

in which, x are the data of the series of annual extreme hydrological
values (floods, winds, levels, precipitations, temperatures, etc.), f(:) is a
transformation of x to make it linear, w; and w; are the covariates of the
climate or the land use, B; and B, are the coefficients of the model and ¢
is the model error, which is considered independent, with uniform
variance and with Normal distribution.
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Vogel, Yaindl and Walter (2011) and Prosdocimi, Kjeldsen and Svensson
(2014) have found that the previous model, when y = In(x) and w; is
considered the time (t) in years, it is useful to analyze trending floods in
U.S.A. and U.K. rivers, regardless of whether the trend was significant
or not. Serago and Vogel (2018) emphasize that such a simple model
does not imply any hypothesis regarding the FDP of the variable y.
Besides, they modify the linear regression to introduce the mean values
(u) of the variables, and then we have:

y=ty+p-wW—u,)+e (2)

now, the variable y is conditioned by the explicative variable w, B is the
coefficient of regression and € is once again the error of the model with
mean zero and variance constant and equal to:

0% =(1-p?) 0 (3)

where, p is the linear correlation coefficient between y and w.
Considering that there are no missing values in the annual series of
extreme hydrological values and that their size is n, then the estimates
in equation (2) are (Prosdocimi et al., 2014; Serago & Vogel, 2018):

py =2 = w (4)
=[] ®
py ==y (6)
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T wi—uw)-(yi—upy)
= 1 Y —7 (8)
[E?=1(Wi_ﬂw)2'Z?zl(Yi_ﬂy) ]
(o2
B=rs, (9)
whereby:
ﬁ' w
p="" (10)
y

Applying equations (6) and (7) to the original data x, their mean (x)
and standard deviation (ox) are defined. Their asymmetry coefficient is
calculated with the expression:

_ Y (-3

X7 (n-1)-(n—-2)-03

(11)

Non-conditional moments

According to Serago and Vogel (2018), when performing a stationary
frequency analysis, the moments of x and y = In(x) do not depend on
the explanatory variable w, therefore, they are non-conditional
moments and are defined by their means (ux, uy), standard deviations
(ox, 0y) and asymmetry coefficients (yx, yy).

Conditional moments of y
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Serago y Vogel (2018) use equation (2) to obtain the conditional
moments that will be used in the non-stationary frequency analysis,
without making any consideration about the FDP of the variable y. The
mean of equation (2) leads to the expression of the expected value of y
conditioned by w, this is:

.uy[W:.uy-l'B'(Wi_.uw) (12)

Similarly, the conditional variance of y is obtained using equations (3)
and (10), to obtain:

02w =02 =(1—p?)-0f = af —f? o} (13)

The above equation shows that the conditional variance of y decreases
as the explanatory power of the trend increases, tending to zero when p
approaches the unit. On the contrary, when p tends to zero the
conditional variance tends to the original. In general, in the non-
stationary frequencies analysis the conditional variance of y is lower
than the non-conditional variance. Serago and Vogel (2018) find that
the conditional asymmetry of y is:

yy[W:yy_ﬁg'yw (14)

The above expression indicates that the conditional asymmetry of y is
equal to the non-conditional asymmetry, when the asymmetry of the
explanatory variable (y) is zero, case of w equal to time (t).

Conditional moments of x

Serago and Vogel (2018) apply the exponential function to equation (2)
and obtain the expression:
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Xw = exp(yw) = exp[ﬂy + B ) (Wi - .uw) + g] (15)

in which, x, and y, are the conditioned values by the explanatory
variable w. Note that hypothesis regard the FDP of x, and y, have not
been established; but according to equation (15) it is probable that x,
comes from a distribution Normal and that y,, does it from a Log-Normal
function. The above is valid because the only variable on the right side
of equation (15) is the error of model € and exp(g), which are
approximately Normal and Log-Normal, respectively.

To obtain the expressions of the conditional moments of x, it will be
accepted that x,, approaches a Log-Normal distribution and then the
equations that relate the mean, variance and asymmetry of x and of y
=In(x) are used in the Log-Normal distribution, which are (Serago &
Vogel, 2018):

2
Hxlw = exp (#y[w + Uyz[w) (16)
O-J?[W = exP(ZMJ’[W + O_j[w) ) [exp(aj[w) - 1] (17)

1/2

CVipw = 222 = [exp(aZ,) — 1] (18)

Hxlw

Vatw = 3CVow + CV,, (19)

Finally, equations (16) to (18) are extended by applying expressions
(12) and (13), to obtain:

Ux[w = €xp [Auy +B-(w;—w) + M] (20)

02w = exp|2uy + 28(w; —w) + 0Z(1 — pD)] - {exp[of (1 — p?)]| — 1} (21)
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CVupw = {exp|aZ(1 — p?) — 1]}1/2 (22)
Stationary LN3 distribution

If a series of annual extreme hydrological values (y) defined as y = In(x
- a) follows a Normal distribution with mean and standard deviation
equal to y, and og,, then the variable x has a Log-Normal distribution of
three fitting parameters (LN3), being a its lower limit or location
parameter. Predictions associated with a certain return period (T7r),
which is the reciprocal of the exceedance probability, are estimated with
the expressions (Kite, 1977; Rao & Hamed, 2000):

Xrr=a+exp(p, +Z0y) (23)

where:
(24)

_ oy
a=x—-——
0

= (%) -2 @5

o, = [In(62 + 1)]"/? (26)
being:

1-B2/3
0 =— (27)

B1/3

and:
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2 1/2
B = M (28)

In the above expression, yy is calculated with equation (11). Finally, Zin
equation (23) is the standardized normal variable; it is estimated based
on the following algorithm (Zelen & Severo, 1972) for a non-exceedance
probability (p):

L= [In(1/pH]"/? (29)

Z — l _ C0+C1-l+C2'lZ (30)

1+d1'l + dz'l2+ d3'l3

with
co = 2.515517 c: = 0.802853 c> = 0.010328
di = 1.432788 d> = 0.189269 dsz = 0.001308

this when 0 < p < 0.50, to do Z = -Z; in case that 0.50 < p < 1.0 use:
p = 1 - pin equation (29), without change Z.

Non-stationary LN3 distribution

The quantile function of the Log-Normal distribution of three non-
stationary fitting parameters (LN3;) is similar to equation (23), but it
uses conditional moments and variables (Serago & Vigel, 2018):

Xrriw = Qxfw + exp(.ux[w +Z- Uy) (31)
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To quantify a,p, with equation (24), equations (20) and (21) are used
and to evaluate p,p, by means of expression (25) the equation (21) is
used. In equation (31), o, is defined with the expression (26), due to
the fact that is only a function of yx (remember equation (14)).

Stationary LP3 distribution

If a series of annual extreme hydrological values (y) defined as y = In
(x) follows a Pearson type III distribution, also known as a three
parameter Gamma, then variable x has a Log-Pearson type III
distribution (LP3). Predictions associated with a certain return period
(Tr), which is the reciprocal of the exceedance probability, are estimated
with the expressions (WRC, 1977; Kite, 1977; Bobée & Ashkar, 1991):

yTr=}_/+Kp'O-y (32)
and
XTr = exp(yTr) (33)

In equation (32), K, is the so-called frequency factor, it is a
standardized Pearson type III variable whose approximation is achieved
based on the standardized normal variable Z (equations (29) and (30))
and the corrected asymmetry coefficient (y.), with the following
equations (Kite, 1977):

Ky = (Kp)l + (Kp)z (34)

being:
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2

(Ky), =Z+@*-1) (%) +%(Z3 ~62) (%)

(), == =0 () +2() +3)

and

. _ 1/2 n . —5)3
_ [n-(n—1)] ( +8_5) ZL:l(lnxl ¥) (35)

€T (n-2) n n-(ay)3
Non-stationary LP3 distribution

Equation (33) is actually the quantile function of the LP3 distribution,
whose non-stationary version (LP3;) is obtained by substituting the
conditional moments of y (equations (12) and (13)), that is (Serago &
Vogel, 2018):

XTT'[W = exp(/ly[w + Kp ) Gy[w) (36)
XTr[w = exp [3_/ + ,B ' (Wi - V_V) + Kp ' (0-3% - .82 ' O-v%)l/z] (37)

The constant values of the previous expression, from left to right, are
defined in equations: (6), (9), (4), (34), (7), (9) and (5), these last
three, squared. For the calculation of K, with the equation (34), Serago
and Vogel (2018) establish a different expression to equation (35) for
the asymmetry coefficient and define it as follows:

yn )3
ye = (1+32) 2=l (38)

n) (n-1)-(m-2)(a,)’
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Stationary GVE Distribution

The Generalized Extreme Values (GVE) distribution includes three
families of functions: the Gumbel that are straight lines on the Gumbel-
Powell probability paper (Chow, 1964), the Fréchet that are curves with
upward concavity and lower limit, and the Weibull that have downward
concavity and upper limit. Its quantile function is the following:

Xry = u+2{1— [~ In(p)]"} (39)

in which, u, @ and k are the location, scale and shape parameters and p
is the probability of non-exceedance. Bhunya, Jain, Ojha y Agarwal
(2007) have proposed expressions to estimate the fitting parameters of
the GVE, based on the mean (x), standard deviation (o, ) and coefficient

of asymmetry (y,), that is, based on the non-conditional moments;
these are: when -0.70 < y, < 1.15

k =0.2778 — 0.320 - y, + 0.0582 - y2 4+ 0.0087 - y2  (40)

and when y, = 1.15

k =—0.31158 - {1. —exp[—0.4556 - (y,, — 0.97134)]} (41)

for -0.50 <k < 0.50, we have:

a =0, (0.7795 + 1.0145 - k — 0.7631 - k? — 0.1429 - k3) (42)

when 0.010 < kK < 0.50
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u=2x+0, (—0.44901 + 0.514075 - k133199) (43)
and when -0.50 < kK < 0.010, the following equation (44) is applied:
u=x+o0, (—0.4427 + 05212 - k + 4.484 - k? + 13.749 - k3 + 19.357 - k*) (44)

The values of ¥ and oy are obtained with equations (6) and (7), using x
instead of y. Serago and Vogel (2018) use equation (11) to estimate the
coefficient of asymmetry (yx).

Non-stationary GVE Distribution

When equations of the conditional moments of x are applied, defined by
equations (20), (21), (22), and (19), in equations (40) to (44), the
fitting parameters of GVE distribution the non-stationary (GVEi) are
obtained, and they are named: u,p,, a,w and k,y, whose quantile
function is (Serago & Vogel, 2018):

Xrrtw =t + 5 (1= [~ In(p)J ) (45)

Standard error of fit

The standard error of fit (EEA) has been established as a quantitative
objective indicator, because it evaluates the standard deviation of the
differences between the observed values and those estimated with the
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FDP that is tested; in this study the models: LN3, LP3, GVE, LN31, LP3;
and GVE;. Its expression is the following (Kite, 1977):

1/2

EEA = [M] (46)

n—-np

in which, n and np are the number of data and of fitting parameters, in
this case three, for the stationary FDP and four for the non-stationary
ones; X; are the data ordered from least to highest and X; are the values
estimated with the stationary quantile function (equations (23), (33),
and (39)) and non-stationary (equations (31), (37), and (45)), for a
probability of non-exceedance estimated with the Blom formulas for the
models LN3, LN34, LP3 and LP3; and of Gringorten for the GVE and GVE;
distributions, as suggested by Serago and Vogel (2018):

pOx <) =p = 2222 (47)
P(X <x)=p=""02 (48)

where, m is the order number of the datum, with 1 for the least and n
for the highest.

Approach of the probabilistic analysis

The EEA helps to select, among different distributions applied to the
data or sample available, the one of better fit. Logically, such models
must be of same type, stationary or non-stationary. Then, in each record
to be processed, the LN3 and LN3; distributions are applied first, then
the LP3 and LP3; and finally, the GVE and GVE;; their EEA values are
analyzed and the predictions sought are adopted. In this process, when
the EEAs are similar, a distribution can be adopted based on
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hydrological safety judgments, that is, the one that reports the most
unfavorable or critical predictions.

By means of equations (31), (37) and (45) predictions are calculated
with return periods (7r) of 2, 25, 50 and 100 years, through the record
period, applying the variable w; in the interval from 1 to n. The first
prediction is the median, since its probability of non-exceedance (F) is
50% and the following three are calculated for complementary
probabilities, to define its higher and lower value (Park, Kang, Lee, &
Kim, 2011), that is, for the following values: F = 0.96 and F = 0.04 for
the Tr of 25 years; F = 0.98 and F = 0.02 for the Tr of 50 years and F =
0.99 and F = 0.01 for the Tr of 100 years.

Predictions that use the variable w; equal to the size of the record (n)
correspond to the end of the historical record. Future predictions are
possible using as magnitude of the variable w;, the sum of the size of
the record (n) plus the lapse in years to the future. Extrapolations of the
predictions were made in three future dates, 10, 25 and 50 years after
the available record is concluded.

Mudersbach and Jensen (2010) establish that the hydrological design of
hydraulic works must be reliable or safe until the end of its useful life or
future date. If the record of floods or annual PMD available to estimate
the CDs, shows an upward trend, then their predictions should be
estimated at such future date so that their hydrological sizing is correct
and not unsafe.

In this context, Salas et al. (2018) have suggested shortening the useful
life values to 25 or 50 years and at the same time making the design
and construction of hydraulic works more versatile, so that they allow
for extensions and/or modifications at lower costs for society.

Records to be processed

The first series of extreme hydrological data corresponds to the annual
maximum flows of the Neponset River in Norwood, Massachusetts,
U.S.A., in the period from 1939 to 2015 (n = 77). This drainage basin
has 89.8 km?, with 16% of its extension of impermeable area, which has
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increased its maximum flows, but it is also a river with small reservoirs
for municipal and industrial supplies (Serago & Vogel, 2018). The
approximate values read from a logarithmic figure of these authors are
shown in Table 1 and Figure 1; it is observed that such record shows
slight upward trend.

Table 1. Annual maximum flows (Q, m>/s) of the Neponset River,
U.S.A. (Serago & Vogel, 2018).

No. Q No. Q No. Q No. Q

1 12.4 21 9.0 41 23.9 61 13.3
2 6.4 22 6.9 42 12.6 62 9.3
3 6.7 23 8.9 43 8.7 63 20.8
4 8.5 24 10.4 44 18.5 64 7.3
5 6.5 25 13.5 45 12.9 65 9.6
6 5.7 26 11.0 46 26.7 66 12.4
7 7.2 27 8.6 47 8.7 67 14.1
8 11.7 28 5.5 48 11.2 68 24.2
9 6.0 29 11.0 49 19.6 69 14.4
10 11.2 30 31.7 50 10.9 70 16.2
11 4.7 31 17.9 51 8.9 71 16.9
12 5.0 32 19.2 52 17.6 72 33.0
13 7.1 33 8.4 53 9.0 73 12.9
14 9.4 34 12.1 54 7.0 74 11.0
15 11.1 35 12.3 55 11.1 75 13.3
16 12.3 36 11.4 56 10.3 76 14.1
17 41.1 37 8.5 57 7.1 77 14.2
18 13.7 38 19.4 58 10.4 - -

19 7.0 39 11.1 59 21.7 - -

20 10.8 40 15.0 60 30.7 - -
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Figure 1. Chronological data series and estimated prediction curves
with the LP3; distribution in a hydrometric station of the Neponset River,
USA.

La second series of extreme hydrological data that was analyzed, comes
from Campos-Aranda (2016) and corresponds to the annual maximum
daily precipitations (PMD) ) of the Zacatecas climatological station, in
the city of the same name in Mexico, with a record of 58 years in the
period from 1953 to 2010. The series has an upward trend, as shown in
Figure 2.

Tecnologia y ciencias del agua, ISSN 2007-2422, 10(6), 57-89. DOI: 10.24850/j-tyca-2019-06-03



) 2019, Instituto Mexicano de Tecnologia del Agua
= Open Access bajo la licencia CC BY-NC-SA 4.0

Tecnologiay “Na= - (https://creativecommons.org/licenses/by-nc-sa/4.0/)
CienciaszAgua
IUU-l-
" Tr = 100 afios - —
Tr = 50 afios -
Tr = 25 afos
80
704
f‘

604 ’
—— Mediana [

Precipitacion maxima diaria anual, en milimetros.

————m——— == \ Tr = 25 aFE&Tr: 50 afios \— Tr = 100 afios

1 5 10 15 20 25 30 35 40 45 50 55 58

Numero del dato o valor de la covariable (w;)

Figure 2. Chronological series of the annual maximum daily
precipitation and estimated prediction curves with the LP3; distribution
in the Zacatecas climatological station, Mexico.

Results and discussion

Predictions in the Neponset River
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Table 2 shows a selection of the predictions obtained during the
historical record with the LN3; distribution. The basic parameters of this
non-stationary fitting were: p = 0.414, B = 0.0085, a,, =3.807,
Uyfw = 2.4830, y. = 1.83614 and o, = 0.5182. Table 3 shows the EEA and the
predictions of the stationary LN3 model with a = 0.5879 and p, = 2.3842
and of the non-stationary, logically at the end of the historical record (n)
and in the three future scenarios proposed.

Table 2. Predictions (m?/s) in the historical record obtained with the
LN3; distribution in the Neponset River, USA.

No. | Data Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 12.4 8.3 17.6 4.5 20.3 4.2 23.0 3.9

10 11.2 9.0 19.0 4.9 21.9 4.5 24.9 4.2
20 10.8 9.7 20.7 5.3 23.8 4.9 27.0 4.6
30 31.7 10.6 22.5 5.8 25.9 5.3 29.4 5.0
40 15.0 11.5 24.5 6.3 28.2 5.8 32.0 5.4
50 10.9 12.6 26.6 6.9 30.7 6.3 34.9 5.9
60 30.7 13.7 29.0 7.5 33.4 6.9 37.9 6.4
70 16.2 14.9 31.6 8.1 36.3 7.5 41.3 7.0
77 14.2 15.8 33.5 8.6 38.5 7.9 43.8 7.4

Table 3. Predictions (m?/s) in the stationary LN3 and non-stationary
LN3; distributions in the Neponset River, USA.

Applied EEA Return periods in years
distribution | (;3,4y T 5 10 | 25 | 50 | 100 | 500 | 1000
LN3 1.00 | 17.4 | 21.7 | 27.5 | 32.0 | 36.8 | 48.8 | 54.4
LN3; () 467 | 223 | 27.1 | 33.5 | 385 | 438 | 57.0 | 63.2
LN3; (n+10) 4.67 | 243 | 295 | 36.4 | 41.9 | 47.7 | 62.1 | 68.8
LN3; (n+25) 4.67 | 27.6 | 33.4 | 41.4 | 47.6 | 54.1 | 70.5 | 78.1
LN3; (n+50) 467 | 341 | 41.3 | 51.1 | 58.8 | 66.8 | 87.1 | 96.5

Table 4 shows a portion of the predictions obtained during the historical
record with the LP3; distribution. The basic parameters of this non-
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stationary fitting were: y = 2.4543 and o, = 0.4569, p = 0.414, B = 0.0085
and yc = 0.53338. Table 5 shows the EEA and the predictions of the
= 0.53878 and of the non-stationary, at
the end of the historical record (n) and in the three future dates

stationary LP3 model with yc

analyzed.

Table 4. Predictions (m?/s) in the historical record obtained with the
LP3; distribution in the Neponset River, USA.

No. | Data Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 12.4 8.1 18.8 4.4 22.2 4.1 26.1 3.8

10 11.2 8.8 20.2 4.8 24.0 4.4 28.1 4.1
20 10.8 9.6 22.0 5.2 26.1 4.8 30.6 4.4
30 31.7 10.4 24.0 5.6 28.4 5.2 33.3 4.8
40 15.0 11.3 26.1 6.1 30.9 5.6 36.3 5.3
50 10.9 12.3 28.4 6.7 33.6 6.1 39.5 5.7
60 30.7 13.4 30.9 7.3 36.6 6.7 42.9 6.2
70 16.2 14.6 33.6 7.9 39.8 7.3 46.7 6.8
77 14.2 15.5 35.7 8.4 42.3 7.7 49.6 7.2

Table 5. Predictions (m?/s) in the stationary LP3 and non-stationary
LP3; distributions in the Neponset River, USA.

Applied EEA Return periods in years
distribution | (m3/s) 5 10 25 50 100 500 1 000
LP3 0.75 16.8 | 21.3 | 28.0 | 33.8 | 40.3 58.8 68.6
LP3; (n) 2.71 22.4 | 27.8 | 35.7 | 42.3 | 49.6 69.9 80.4
LP3; (n+10) 2.71 24.4 | 30.3 | 38.8 | 46.0 | 54.0 76.1 87.5
LP3; (n+25) 2.71 27.7 | 34.4 | 44.1 | 52.2 | 61.3 86.4 99.3
LP3; (n+50) 2.71 34.2 | 42.5 | 54.4 | 64.5 | 75.7 106.7 122.7
Table 6 shows a part of predictions during the historical record,

estimated with the GVE; distribution, with y,p, = 2.2731 and parameters

of fit: Uy[w = 14.015, Axw = 4,742 and kx[w

= —0.139. On the other hand,

Table 7 shows the EEA and the predictions of the stationary GVE model
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with y, = 1.8361, u = 9.817, a = 4.607 and k = -0.101, as well as the
non-stationary at the end of record and in the future in the three dates
proposed.

Table 6. Predictions (m?/s) in the historical record obtained with the
GVE; distribution in the Neponset River, USA.

No. | Data Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 12.4 8.3 17.4 4.7 20.3 4.3 23.4 3.9

10 11.2 9.0 18.8 5.1 21.9 4.6 25.3 4.3
20 10.8 9.8 20.5 5.5 23.8 5.0 27.5 4.6
30 31.7 10.6 22.3 6.0 25.9 5.5 30.0 5.0
40 15.0 11.6 24.2 6.5 28.2 5.9 32.6 5.5
50 10.9 12.6 26.4 7.1 30.7 6.5 35.5 6.0
60 30.7 13.7 28.7 7.7 33.4 7.0 38.6 6.5
70 16.2 14.9 31.2 8.4 36.4 7.7 42.0 7.1
77 14.2 15.8 33.1 8.9 38.6 8.1 44.6 7.5

Table 7. Predictions (m?/s) in the stationary GVE and non-stationary
GVE; distributions in the Neponset River, USA.

Applied EEA Return periods in years
distribution (m3/s) 5 10 25 50 100 500 1 000
GVE 1.01 17.3 21.5 | 27.2 31.9 | 36.8 | 49.7 55.9
GVE; (n) 4.65 21.9 26.5 33.1 38.6 | 44.6 | 60.9 69.1
GVE; (n+10) 4.65 23.9 28.9 36.0 | 42.0 | 48.5 66.3 75.2
GVE; (n+25) 4.65 27.1 32.8 40.9 47.7 55.1 75.2 85.4
GVE; (n+50) 4.65 33.5 | 40.5 50.6 58.9 | 68.1 92.9 105.5

Based on the values of the EEA shown in Tables 3, 5 and 7, the
predictions or results of LP3 and LP3; distributions are adopted, against
those of the LN3 and LN3;, GVE and GVE; models, because they lead to
their lowest magnitudes, indicating with it, a better fitting for the
available data. Predictions of the non-stationary LP3; distribution were
found to be the most severe or critical, thus providing greater safety in
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the hydrological design at the end of the useful life of 10, 25 or 50
years.

Figure 1 shows the chronological series of the Neponset River floods,
U.S.A. and their estimated prediction curves with the non-stationary
LP3; distribution.

Predictions in the Zacatecas station

Table 8 shows a part of the predictions obtained during the historical
record with the LN3; distribution. The basic non-stationary parameters
of fit were: p = 0.298, B = 0.0057, a,, = —66.8647, u,p, = 4.7920, yc =
0.42827 and o, = 0.1411. Table 9 shows the EEA and predictions of the

stationary LN3 model with a = -54.6459 and uy, = 4.6091 and of the
non-stationary, logically at the end of the historical record (n) and in the
three future scenarios proposed.

Table 8. Predictions (mm) in the historical record obtained with the
LN3; distribution in the Zacatecas station, México.

No. | Data | Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 35.1 38.8 63.3 19.7 68.2 16.9 72.7 14.4

10 26.4 40.9 66.6 20.8 71.7 17.8 76.5 15.2
20 44.0 43.3 70.5 22.0 75.9 18.8 81.0 16.1
30 29.2 45.8 74.6 23.3 80.4 19.9 85.7 17.0
40 32.0 48.5 79.0 24.6 85.1 21.1 90.8 18.0
50 41.0 51.3 83.6 26.1 90.0 22.3 96.1 19.1
58 65.0 53.7 87.5 27.3 94.2 23.3 100.5 19.9

Table 9. Predictions (mm) of the stationary LN3 and non-stationary
LN3; distributions in the Zacatecas station, Mexico.

Applied EEA Return periods in years

Tecnologia y ciencias del agua, ISSN 2007-2422, 10(6), 57-89. DOI: 10.24850/j-tyca-2019-06-03




- g 2019, Instituto Mexicano de Tecnologia del Agua
R Open Access bajo la licencia CC BY-NC-SA 4.0

Tecnologiay :\Q-'" (https://creativecommons.org/licenses/by-nc-sa/4.0/)
CienciaszAgua
distribution | (mm) 5 10 25 50 100 500 1 000
LN3 1.52 58.4 65.6 73.9 79.5 84.8 96.0 100.6
LN3; (n) 8.93 68.9 77.6 87.5 94.2 100.5 114.1 119.6

LN3; (n+10) 8.93 72.9 | 82.1 92.6 99.7 106.4 | 120.7 126.6
LN3; (n+25) 8.93 79.4 | 89.4 | 100.8 | 108.6 | 115.9 | 131.5 137.8
LN3; (n+50) 8.93 91.5 | 103.0 | 116.2 | 125.1 | 133.5| 151.5 158.8

Table 10 shows a portion of the estimated predictions during the
historical record with the LP3; distribution. The basic parameters of this
non-stationary fitting were: y =3.7962, o, =0.3218, p = 0.298, B =

0.0057 and y. = -0.50869. Table 11 shows the EEA and the predictions
of the stationary LP3 model with yc¢ = -0.51495 and of the non-
stationary at the end of the record and in the three future dates
analyzed.

Table 10. Predictions (mm) in the historical record obtained with the
LP3; distribution, in the Zacatecas station, Mexico.

No. Data Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 35.1 38.9 61.3 21.0 65.3 18.6 69.0 16.6

10 26.4 40.9 64.5 22.2 68.8 19.6 72.6 17.4
20 44.0 43.3 68.2 23.4 72.8 20.7 76.9 18.4
30 29.2 45.8 72.2 24.8 77.0 21.9 81.3 19.5
40 32.0 48.5 76.4 26.3 81.5 23.2 86.1 20.7
50 41.0 51.3 80.9 27.8 86.3 24.6 91.1 21.9
58 65.0 53.7 84.7 29.1 90.3 25.7 95.4 22.9

Table 11. Predictions (mm) of the LP3 stationary and LP3; non-
stationary distributions in the Zacatecas station, Mexico.

Applied EEA Return periods in years
distribution: | .,y T 5 10 25 50 | 100 | 500 | 1000
LP3 1.51 | 58.6 | 65.8 | 73.6 | 78.7 | 83.3 | 92.6 | 96.1
LP3; () 446 | 68.1 | 76.0 | 84.7 | 90.3 | 95.4 | 105.5 | 109.3
LP3, (n+10) | 4.46 | 72.1 | 80.5 | 89.6 | 95.6 | 100.9 | 111.7 | 115.7
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LP3; (n+25) 4.46 78.5 87.6 97.6 104.1 109.9 | 121.6 126.0
LP3; (n+50) 4.46 90.4 | 101.0 | 112.5 | 120.0 | 126.7 | 140.1 145.2

Table 12 shows part of the predictions during the historical record,

estimated with the GVE; distribution, with y

x‘w

=2.1646 and fitting

parameters: u,p, = 46.955, a,, =10.950and k,p, = —0.131. In contrast,
Table 13 show the EEA and the predictions of the stationary GVE model
with yx = 0.4283, u = 40.896, g = 13.166 and kK = 0.152, as well as the
non-stationary, record term and in the three future dates proposed.

Table 12. Predictions (mm) in the historical record estimated with the
GVE; distribution in the Zacatecas station, Mexico.

No. | Data Median Tr = 25 years Tr = 50 years Tr = 100 years
Sup. Inf. Sup. Inf. Sup. Inf.

1 35.1 36.9 65.4 25.4 74.3 24.1 83.9 23.0

10 26.4 38.9 68.9 26.7 78.2 25.3 88.3 24.2
20 44.0 41.2 72.9 28.3 82.8 26.8 93.5 25.6
30 29.2 43.6 77.1 29.9 87.6 28.4 99.0 27.1
40 32.0 46.1 81.6 31.7 92.7 30.0 104.7 28.7
50 41.0 48.8 86.4 33.5 98.1 31.8 110.9 30.4
58 65.0 51.1 90.4 35.1 102.7 33.3 116.0 31.8

Table 13. Predictions (mm) of the stationary GVE and non-stationary
GVE; distributions in the Zacatecas station, Mexico.

Applied EEA Return periods in years
distribution | 3,4y [T 5 10 25 50 100 | 500 | 1000
GVE 144 | 58.6 | 66.0 | 742 | 79.6 | 845 | 93.8 | 97.2
GVE; (n) 9.45 | 65.1 | 75.6 | 90.4 | 102.7 | 116.0 | 151.9 | 169.8
GVE,(n+10) | 9.45 | 68.9 | 80.0 | 957 | 108.7 | 122.8 | 160.8 | 179.7
GVE,(n+25) | 9.45 | 75.0 | 87.1 | 104.2 | 118.4 | 133.7 | 175.1 | 195.7
GVE;(n+50) | 9.45 | 86.5 | 100.4 | 120.1 | 136.4 | 154.1 | 201.8 | 2255

Based on the values of the EEA shown in Tables 9, 11 and 13 the
predictions or results of the GVE and LP3; models are adopted, because
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they lead to their lowest magnitudes, thus indicating a better fitting to
the available data. The predictions of the three stationary models are
almost identical. The GVE; function reports more extreme or critical
predictions, but its EEA is more than the double obtained with the LP3;
distribution; therefore they were not selected.

Figure 2 shows the chronological series of annual PMD of the Zacatecas
climatological station, Mexico and its straight lines of estimated
predictions with non-stationary LP3; distribution.

Conclusions

The frequency analysis (AF) of records of annual extreme hydrological
data that are not homogeneous, when presenting trend, will be quite
frequent in the immediate future, due to the effects of global or regional
climate change and the physical impacts of alterations in the basins of
drainage, such as urbanization and deforestation, as well as the
construction of reservoirs.

Another aspect that will favor such non-stationary AF is to provide
hydrological protection at the end of the useful life of a hydraulic work.
The above, requires taking into account the trend observed in the record
to be processed, in order to obtain more reliable predictions at a future
date, when the useful life of the hydraulic work that is dimensioned
ends. This is important when the record shows upward trend.

The method described and developed by Serago and Vogel (2018) and
also exposed by Salas et al. (2018), based on the conditional moments
of y = In(x) and of x, which are the available data, allows us to obtain,
in a simple way the functions of non-stationary quantile, of three of the
most used probability distributions and highest universality in the AF of
floods and other extreme annual hydrological data, which are the Log-
Normal (LN3), the Log-Pearson type III (LP3) and the Generalized
Extreme Values (GVE).

The method uses time as a covariate, with a linear trend and therefore
the non-stationary models LN3;, LP3; and GVE; are fitted. Quantile
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functions, which allow obtaining their predictions sought, are only
slightly more complicated than their stationary versions, which makes
this approach quite practical, to obtain predictions in trending records,
within them, at their end and in future dates. This was demonstrated in
the two numerical applications described; whose selection of better
fitting achieved was based on the standard error of fit, a technique
widely used in the AFs.
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